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1 INTRODUCTION

Labeling training data has long imposed a bottleneck on many machine learning tasks. It is a required
step to train supervised machine learning algorithms [7]. Labeling is both a time-intensive and
expensive process in which crowdworkers and/or subject matter experts must use their cognitive
abilities to categorize and label vast datasets - often a repetitive process. Crowdsourcing platforms
offer an abundance of relatively cheap labor and are widespread for labeling tasks [4, 29, 37]. Subject
Matter Expert labeling frameworks also exist [54], but there the labor force is small and likely
extremely expensive. Crowd workers as well as Subject Matter Exports could potentially benefit
from tools to make their tasks more efficient and less laborious. Many researchers have investigated
how to design labeling tasks to help people label more quickly and more efficiently. In this paper,
we study “batch labeling,” where a single labeling action can be applied to multiple records. We
investigate how Al-driven batching of items impacts labeler performance. To do this, we need to
understand how individuals perceive the quality of the batches that are produced by an Artificial
Intelligence (Al) system, and also measure the objective coherence of Al-generated batches. We
also need to be wary of the Al system working "too hard" on behalf of the labelers, leading to the
risk that they may overrely [47] on the Al assistance, and fail to exercise human discernment when
assigning labels to items in a batch.

In this paper we investigate a batching tool that leverages Al to make batched recommendations
for those who are doing the labeling work. We conducted four studies to explore the following six
research questions:

RQ1: Does batching impact the outcome (accuracy score and time spent on task of the labeling
task?
RQ2: How does task complexity (vocabulary size) impact the outcome of data labeling?
RQ3: Does telling users that the batches are generated by an Al system impact the outcome
(accuracy score, time spent on task agreement with batches, and overreliance)?
RQ4: How does the quality of the Al generated batches impact the outcome (accuracy score, time
spent on task agreement with batches, and overreliance) of the labeling task?
RQ5: Can we mitigate overreliance on Al-assisted batching by asking users to rate the batches
suggested by the Al system?
RQ6: Can we mitigate overreliance on Al-assisted batching by signaling to users that their
responses will help improve the AI's batch recommendations in the future?
We pursued these questions through four experiments.
e In Study 1 (RQ1, RQ2), we investigate the effects task complexity and batching have on data
labeling performance (accuracy and time taken to complete task)
e In Study 2 (RQ3), we investigate the impact of the feedback given to the labeler about AI’s
involvement in the process on users’ data labeling performance. We also examine labeler
agreement with batches and overreliance on its recommendations.
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e In Study 3, (RQ4), we investigate the impact of the quality of the Al generated batches on
user performance.

e In Study 4 (RQ5, RQ6), we investigate overreliance mitigation strategies and their impact
on data labeling performance and agreement/overreliance.

The contributions of this paper are the following:

e We demonstrate batching is more effective for complex tasks than simple tasks when looking
at total time spent on task
o We demonstrate that Al quality impacts both the degree to which labelers agree with batching
recommendations and their overreliance on recommendations.
e We provide design implications for building and designing effective Al-driven batching
systems for labeling. These implications include:
i. Baseline settings for “Select-All” buttons on batching systems
ii. Dynamically allowing users to choose batch sizes or generating batch sizes based on item
similarity
iii. Providing thoughtful feedback to promote mindfulness during the labeling task
iv. Providing label suggestions in addition to batching

2 RELATED WORK
2.1 Automated and Labeling Assistance Approaches

Labeling training data is an expensive and time-consuming process. Prior work has explored
creative approaches to gain time efficiencies. For example, Ratner et al. [51] investigated the
idea of data programming by allowing users to write labeling functions that express arbitrary
heuristics which can reveal accuracies and correlations as a starting training data set. While this
approach improves time efficiency, it requires labelers to learn how to write labeling functions. In
the biomedical domain, Fauqueur et al. [17] explored a method to generate weakly labeled data in
an automated manner for the construction of knowledge bases to derive biomedical relationships.
This approach aims to combine automatic data generation with domain expert feedback. Vajda et al.
[65] explored a semi-automatic labeling technique for large handwritten character collections by
taking an unsupervised clustering and minimal expert knowledge approach. Their work suggests
that by using their system, the involvement of human labor can be lessened to obtain cost gains;
however, labeling data remains a lengthy process. Demirkus et al. [13] developed a semi-automatic
framework for labeling temporal head poses in real-world video sequences, a task that is both
time-intensive and expensive. Their framework automates the labeling process for video-labeling
and achieves a 96.8% accuracy over manual labeling video frames (30%). Getting quality work from
crowdworkers is a challenge, as demonstrated by prior work that investigated ways to get quality
data from crowdworkers through aptitude tests and training in qualitative coding, showing that
in-person training can improve quality of data collected on crowdsourcing platforms [42].

These works show the range of ideas being explored to assist labelers with labeling data more
accurately and faster through automated techniques and non-automated techniques. However,
the successful work with images and videos does not necessarily transfer into the domain of text.
Images and videos have a predictable “surface” structure, whereas text often deals with latent
matters of semantics. Al-driven batching recommendation interfaces have not yet been explored to
improve the labeling process.

2.2 Human-Al Interaction

The growing prevalence of contemporary Al in a wide array of everyday systems has called our
attention to the nature and experience of interactions between humans and intelligent machines [14].
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Early Al systems (based largely on planning-based techniques) were critiqued for their inability to
adapt in face of emergent, situated action [62]. Our technological encounters gradually became “less
a matter of pushing buttons and pulling levers” and more about situated interaction, dialogue, and
conversation between people and machines [26, 63]. Later work, most notably the "mixed initiative"
approach, pointed to a number of design principles to foster more intuitive and adaptive interactions
between humans and intelligent systems; a central theme in these design principles is the need to
grapple with uncertainty and that humans’ goals can evolve through action [26]. Contemporary Al,
driven by Big Data and statistical machine learning, raises important questions for social computing
researchers as the promise of machines as collaborative partners in a number of everyday and
domain settings becomes more and more a reality. A number of CSCW papers in recent years have
addressed questions of human-AlI collaboration, for example in medical decision-making [8], data
science work [66], or IT infrastructure design practices [72].

Recent work in the HCI and CSCW community investigates how users try to understand and
form impressions of Al systems and outcomes in human-AI collaborative settings [3, 67]. While a
recent survey found Al-decision-making systems to be unfavorable with people [2], other studies
have found that in many domains individuals believe in the inevitability of human-Al collaboration
and were optimistic about the potential in data science [66], music [11], pedagogical tools for health
literacy [61] and other forms of tutoring [1]. While computer-mediated communication research
has extensively studied how users form impressions of other people they are communicating
and interacting with through computer mediated channels [27], there have been few studies
investigating user performance and overreliance on Al technologies in Al-driven labeling systems.

2.2.1 Labeling as Collaborative Work. Data science, and particularly machine learning, are in-
creasingly carried out by teams [35, 43, 48]. The 2017 Kaggle survey identified 15 distinct roles
in data science teams, such as data scientist (15%), software developer (11%) data analyst (7%),
scientist/researcher (6%), business analyst (5%), and additional roles with lower frequencies of
occurrence [28]. The complex nature of data science projects makes it unlikely that a single person
will have sufficient knowledge or skills to create or implement all aspects of a project [30, 40].
Collaboration practices among diversely-skilled members of data science teams may be complex,
requiring distinct tools, and involving nuanced communication patterns [76].

The work of data labelers (or annotators) is part of this complexity, and the tools used by labelers
constitute a family of semi-specialized applications (for a review of applications, see Section 2.4,
below). In many domains, a data scientist or a domain expert specifies a vocabulary of labels,
and the task of applying those labels to instances (data records) falls to other members of the
data science team [19, 68, 69]. After the labels have been added to data records, then the datset
itself is passed along to other roles in the complex hierarchy of data science teams [28] and their
work-practices [76]. Thus, labels are collaborative objects, and labelers make their contributions
within the collaborative fabric of data science teams.

2.3 Overreliance on Automation and Artificial Intelligence

Automation bias is defined as the "tendency to over-rely" on automated systems [21]. This issue
has been investigated in a number of critical industries, such as medicine [21] and aviation [52].
In a situation of overreliance, humans uncritically follow recommendations from an automated
system, without using their own perceptual capacities and judgment. Overreliance can be harmful
because it degrades human-in-the-loop processes - where the human plays an important role in
providing feedback, shaping machine action, and acting as a monitor or quality assurance to ensure
"all goes well" [58].
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More and more processes are becoming automated due to advances in Al, for example, from
label recommendation systems for data labelers when labeling data [65], to an automatic aeroplane
control for pilots when flying planes [6]. One challenge emerging as automation is introduced
within the workflow of humans and machines working together is that of the human over-relying
on the system capabilities [23]. Tragic examples are known from airplane crews being unable to
coordinate with the automated system in how to respond to a situation [20, 60]. Human overreliance
on the system is problematic and can contribute to users losing critical engagement with the process
[23]. Overreliance on automation has historically been studied by measuring reactions by trained
pilots on automated aircraft control tasks that would occasionally fail [52].

Reliance and Trust are closely related constructs. Many instruments that measure trust ask how
likely an individual is to follow the recommendations given by that system [12, 31, 64]. In a recent
study, user trust was measured based on how likely an individual was to follow the recommendations
given by an AI [75]. Trust is an important aspect of human-AI interaction. Individuals may decide
not to use a reliable, well-designed system if they do not trust it. Conversely, they might use
an unreliable system if they do trust it. Both of these phenomena have been observed in prior
work [36]. Overreliance and complacency of automated reliable systems has been documented
in prior work [47]. Complacency on automated systems has been described as the consistency
of the reliability of the automated task in a multi-task environment [46]. Prior work identifies
conditions that lead to complacency or the premature cognitive commitment to an automated
device as: routine, repetititon and extremes of workload [32] - all conditions that occur in labeling
tasks. To our knowledge, overreliance has not yet been studied in Al-assisted labeling systems.

Prior work has documented different ways in which complacency and overreliance can be
addressed. Miller et al. have suggested that increasing a user’s awareness of the situation and system
performance and giving that user more control of how much automation to use, may ameliorate
complacency [41]. Historically, airplane pilot tests have attempted to address overreliance on
automating pilot tests [52], since in the worst case scenario of an example of overreliance, a pilot
can crash an airplane by overrelying on the airplane automation, as seen in a crash in Columbus,
Ohio in 1994 [47]. More recent work has attempted to make decision making machine learning
processes more transparent and interpretable to help users come to an informed decision about
how much they want to rely on the Al decision making system [22]. In this paper, we explore
mitigations in our Al-driven batching system to study the mitigation of labeler overreliance on
Al-recommended batches.

2.4 Machine-Teaching

In a simple sense, any labeling or annotating task involves a human teaching a machine-learning
model about the ground truth of the data [24, 49]. It might be argued that each labeling task is
in some way “unique.” However, a growing family of labeling and annotation tools have been
built and used across diverse media, including images, audio passage, chatbot dialogs, medical
records, and other domains. The BRAT tool [59] provides a good example of generalizability. It was
originally designed for use in linguistics, but has also been applied in studies of healthcare [73] and
rhetoric [5]. Similarly, CrowdFlower has been used as the Ul component in studies of linguistics
[74], social media [18], and audio recordings [9]. However, all of these tools depend primarily on
human abilities. Al tools show promise to extend and augment humans’ labeling capabilities.

As the relationship between Al and humans becomes more collaborative [58], researchers
continue to investigate different ways to make these relationships yield a better user experience.
Interactive machine teaching is a growing area that sees the ML model training process through
a human-centered lens [15]. The interactive machine teaching paradigm is seen as making ML
building practices more accessible to novices and non-ML experts by framing the training process
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in terms of a collaborative relationship between humans and ML systems [15, 50] . Hong et al [25]
used a machine teaching exercise (e.g., mTurk users uploaded photos to teach the model various
categories) to understand how human teachers understand and reflect on their experiences with
ML. They found that participants understood the need for diversity in training samples, but also
struggled with understanding notions of consistency in training samples, as well as misconceptions
about the model’s reasoning capabilities. The mitigation deployed later in this study leverages this
prior machine teaching work by framing the labeling process as a collaborative one between the
user and the AI batching system.

Item#1 0/240 labeled Question
Read the example text and then select the label that best describes it best below

example Where can I find my bank routing numbers for money transfer? Labels (selectone) @ AZ v

0» - Banking ©® 4 @

Telecommunication and Phone Services @

Submit

Fig. 1. The simple task x no batching condition seen by participants in Group 0 in Study 1 (see Table 1).
A) where batching occurs/does not occur and B) where labels are are listed reflecting task complexity.

0/60 labeled  Ques

best below

Fig. 2. The complex task x batching condition seen by participants in Group 3 in Study 1 and 2 (see Table
1). A) batching occurs/does not occur and B) where labels are listed reflecting task complexity.

2.5 Active learning

Using unsupervised machine learning to batch data for human labeling efficiency shares some
general characteristics with active learning [57]. Active learning is a human-in-the-loop labeling
paradigm wherein the ‘learner’ (generally a supervised model) is used to select which examples to
label from a pool of unlabeled data. A common implementation is to use the learner’s ‘uncertainty’
as a data selection heuristic. Both active learning and batch labeling utilize a machine learning
algorithm to organize and optimize the human labeling task. In the case of batch labeling, the
algorithm is unsupervised, and the goal is to reduce redundant labeling effort by grouping data
for presentation to the labeler. Active learning combines the output of a supervised model with a
selection heuristic to minimize the overall amount of data that is necessary to label. The way in

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 89. Publication date: April 2021.



Al-Assisted Human Labeling: Batching for Efficiency without Overreliance 89:7

which both paradigms treat data is subtle but important. However, active learning does not affect
the labeling experience as deeply as batching. While it has some properties that could affect user
experience (such as difficult of labeling), its utility focuses on the order and quantity of data that
needs to be labeled.

In this paper, we focus on batching as an interaction design and the impact it has on the outcome
of labeling. Future investigation might concentrate on integrating active learning into the batch
labeling process as it would likely improve labeling performance at the cost of a more complex
implementation. Ordering of batches using an active learning selection strategy may lead to a more
optimal labeling process, whereby the most uncertain batches are labeled first, and the overall
number of batches is reduced. A more advanced integration might dynamically use heuristic data
in the construction of batches themselves.

3 SYSTEM DESCRIPTION
3.1 Overview of System

The studies presented in this paper were conducted on a data labeling platform we built (shown in
Figures 1 and 2). Our motivation for building a new labeling platform, as opposed to using one
of the existing labeling/crowd-working tools in the market, is two-fold. First, we envision our
platform to primarily cater to Subject Matter Experts (SMEs) who bring their domain of expertise
to drive the data labeling process, ensuring the high quality and satisfactory justification of the
labeled data. Second, designing our own data labeling platform allows us to study and fine-tune
the Al system’s labeling assistance during the user experience. The Al assistance feature we focus
on in this study is the paradigm of batch labeling which is discussed in detail in Section 3.2

Our system is set up to give users the ability to create custom data labeling projects with granular
control over various configurations of the labeling task. These configurations include, among others,
project metadata (name, description, etc.), whether Al-driven batches are enabled, label taxonomy
size, whether single or multiple labels can be applied to a data item, and the labelers who will be
invited to perform labeling tasks on this project. As part of project creation, project owners upload
and preview the dataset to be labeled, configure the labeling task prompt and input the labeling
taxonomy. Project owners have the administrator privileges to modify and delete projects as needed.
Once a project is configured and launched, project owners and labelers can begin labeling data
items via the interface pictured in Figure 1 and Figure 2, depending on the configuration. The data
items are presented on the left side of the screen while the labeling question and label options are
posed on the right side of the screen. Depending on project configuration, labelers can submit one
label or multiple labels. If the project is configured to enable Al-driven batches, the data items are
presented in batches as explained in Section 3.2

3.2 Batch Labeling: Baseline Al

Our data labeling platform includes "batch labeling”, an Al-assisted UX paradigm, that aids data
labelers by allowing a single labeling action to apply to multiple data records. We consider it
an Al-assisted UX paradigm because Al is used to partition (or batch) unlabeled data items into
coherent groups! and user interface affordances allow users to take action on one or more items
within the batch.

3.2.1 Batch Labeling Interface. Using a batching system, the overall labeling task proceeds by
presenting a sequence of batches to the labeler, one batch at a time. The interface for labeling a
batch is shown in Figure 2. Comparing it to the single-item interface in the system shown in Figure

Informally, the contents of a group are coherent if all data items in the group are anticipated to have the same underlying
label.
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1, it includes mechanisms for selecting all items, toggling the selection of individual items in the
batch on/off, and a count of the number of selected items. As in the single-item labeling process,
the user can choose and confirm a label on the right. The "Select All" option is enabled by default,
but the labeler can deselect items and apply a label to only those currently selected items. The
batch stays on the screen, with labeled items becoming disabled, until all elements of the batch are
labeled, at which point the system displays the next batch.

We focused on fixed-size batches for data labeling in order to limit the labelers’ cognitive load, to
create a more consistent labeling experience, and to remove the need for scrolling in the item area
if there are more items in the batch than can fit on the screen at one time. For our purposes, we
chose a batch size of 4 elements, balancing potential labeling efficiency gains against screen size
constraints in the labeling interface and the cognitive load endured by the labeler.

3.2.2  Nearest-Neighbor Batching. In order to compute fixed-size coherent batches we use an
unsupervised Nearest Neighbor (NN) inspired data partitioning algorithm. The algorithm produces
batches based on computing an N x N nearest neighbor matrix where N is the total number of data
items. The j-th row in the matrix contains the N distance to all neighbors of data item j according to
a similarity metric. Using the nearest neighbor matrix the algorithm iteratively constructs batches
of size s. During each iteration a random un-batched item I is selected from the set of remaining
un-batched data items. A batch is formed by including I and the (s - 1) closest un-batched neighbors.
The algorithm continues until the set of un-batched items is exhausted. The NN batching algorithm
relies on the smoothness assumption commonly applied in supervised and semi-supervised machine
learning. This assumption states that points that are close to each other in the feature space are
more likely to share a label.

Alternative data partitioning algorithms, such as K-Means [38] are not directly applicable to
the data batching problem as they produce variable size partitions. The same limitation applies
to general clustering algorithms, such as DBSCAN [16] which result in mixed size clusters and
un-clustered outliers.

3.2.3 Batch Quality Metrics. To evaluate the quality of the batches we obtain with the NN algorithm,
we consider the following set of metrics.

e Homogeneity [53] formalizes the notion of coherence and evaluates the quality of a dataset
clustering relative to a known ground truth. A batching result satisfies homogeneity if all
batches contain only data points which are members of a single class or label. Homogeneity
values range between 0 and 1.

e Mean Pair-Wise Cosine Similarity within a batch provides a general measure of batch quality,
with values ranging between 0 and 1. As per the smoothness assumption, batches with a higer
degree of pairwise similarity, are more likley to share the same latent label.

e Purity [39] is a measure of the extent to which individual batches contain a single label, and
is calculated in reference to a known ground truth. Purity is similar in nature to homogeneity,
but applied on a per batch basis.

4 DATA AND BATCH CONSTRUCTION

For our research, we choose a short text classification problem as the underlying machine learning
task for data labeling. Thus, the labeling task involves applying labels to a sequence of short text
snippets (utterances). We ran three studies to investigate the relationship between labelers and the
batching system. All experimental groups and details of the conditions involved in each study are
listed in more detail in Table 1.
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Group | Batching | Complexity | Al Quality | Feedback Mitigation Study
0 None 2 (Simple) Baseline None None 1
1 Batching 2 (Simple) Baseline None None 1
2 None 12 (Complex) Baseline None None 1
3 Batching | 12 (Complex) Baseline None None 1,2
4 Batching | 12 (Complex) | Degradation | Present None 3,4
5 Batching | 12 (Complex) Baseline Present None 2,3, 4
6 Batching | 12 (Complex) Perfect Present None 3
7 Batching | 12 (Complex) Baseline Present Rating 4
8 Batching | 12 (Complex) Baseline Present | Machine-Teaching 4
9 Batching | 12 (Complex) | Degradation | Present Rating 4
10 Batching | 12 (Complex) | Degradation | Present | Machine-Teaching 4

Table 1. Experimental manipulation for each group (15 participants per group, pre data-filtering). Study
column indicates whether participants in the group were assigned to Study 1, Study 2, Study 3, and Study 4.

4.1 Dataset / Data prep

The particular dataset chosen for these studies consists of short text utterances (9 words avg.),
originally used to train an intent classification model for a customer service chatbot. To label the
dataset, the labeler reads each utterance, and then selects a corresponding label (which is called an
intent [70] in chatbot reinforcement learning paradigms). For example, the utterance “Can I request
a replacement for my card online?” is correctly labeled with the intent “Replace Bank Card”.

The dataset consists of 240 utterances and twelve unique labels, each example having a single
label, with a balanced distribution across labels in the set of utterances. The dataset was selected
due to its general domain accessibility for non-specialists, and realistic use case. Table 2 shows the
12 original labels and their definitions, that belonged to two categories. For the purposes of our
study we also derived a simpler categorical labeling of the data, where each example pertains to
either “Banking” or “Telecommunication and Phone Services” (2 labels). For example, in the simple
task (as pictured in Figure 1) participants can choose from “Banking”, whereas in the complex
tasks “Banking” can be further subdivided into six categories:“Activate Bank Card”, “Cancel Bank
Card”, “Fee Inquiry from Bank”, “Replace Bank Card”, “Report Missing Bank Card”, and “View Bank
Routing Number”. The same applies to “Telecommunication and Phone Services.” We did this to
keep the dataset constant across the various conditions.

Vocab. Label Definition
Size
12 Activate Bank Card Any request pertaining to the activation of a credit card or debit card
Cancel Bank Card Any request pertaining to the closing/canceling of a credit card or debit card
Fee Inquiry from Bank Any inquiry about a bank fee
Replace Bank Card Any request pertaining to replacing a credit card or debit card
Report Missing Bank Card Any request pertaining to the reporting of a missing/lost/stolen credit/debit card
View Bank Routing Number Any request to view routing number associated with a particular bank account/card
Activate Phone/Device Any request pertaining to the activation of a phone/sim or other telecommunications
device
Activate Roaming for Phone Device Any request pertaining to the activation of roaming for a phone/device/sim
Unlocking a Device/Phone Any request pertaining to the unlocking for a phone/device/sim
Changing/Keeping Phone Number Any request pertaining to changing a current phone number or transferring a phone
number between devices
Return a Device/Phone Any request pertaining to the returning of a phone/device/sim
Swap a Device/Phone Any request pertaining to the swapping/exchanging of a phone/device/sim
2 Banking Any text that is pertaining to banking requests including credit card inquiries, banking
fees, requests for data associated with banking
Telecommunication and Phone Services Any text that is related to requests around sim cards, phone services, roaming services
and phone devices

Table 2. The labeling taxonomies and definitions used in the study.
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Mean Pairwise Similarity / Cluster Purity

Fig. 3. A batch chart for Baseline Al batching. The X axis represents a sequence of batches, as presented to the
labeler. Both purity and mean pairwise cosine similarity slightly degrade through the batches. For example,
batch 30 has a purity of 1.0, indicating that all examples have the same label and the pairwise similarly of
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4.2 Batch Construction

In order to apply the NN batch construction algorithm to our study data set we first encoded each
text utterance in the dataset into a fixed size high-dimensional vector. To achieve this encoding we
applied the Universal Sentence Encoder (USE) [10], a transfer-learning model capable of producing
semantically rich vector representations from greater-than-word length text. USE produces a 512
component vector representation for each utterance. We applied the NN algorithm on the resulting
vectors, using cosine similarity as the neighbor similarity metric.

In the remainder of the study we refer to the NN-based batch construction as baseline Al batching.
To facilitate understanding and comparison among different batching algorithms we use batch
charts as shown in Figure 3. Batch charts simultaneously plot the mean pairwise cosine similarity
and purity within a batch and over a sequence of batches. The batch chart in Figure 3 provides a
visual representation of Baseline Al batch construction, as applied to the study dataset. The figure
illustrates how the mean pair-wise cosine similarity slowly degrades as a result of the greedy nature
of the batch construction algorithm: during later batches, the closest, most similar neighbors may
no longer be available for batch construction. Purity also slightly degrades throughout the batching.
The average homogeneity score produced by Baseline Al batching on 3 different random orderings
of the study dataset is 0.789. To study the effect of using Al-based batching for data labeling tasks,
we are contrasting the baseline Al batching algorithm with two alternatives:

4.2.1 Perfect Al Batching. To simulate a Perfect AI batching algorithm, and to provide an upper
limit to the quality of batches in such a system, we took advantage of the ground truth labels for
our data set to construct batches that, by design, only include items with the same label. Both the
average per batch purity and homogeneity of Perfect Al batching is 1.0. Figure 4 provides a visual
representation of Perfect AI batching.

4.2.2 Degradation Al Batching. The converse to aPerfect Al batch is a worst-case batch where every
item has a different label resulting in minimal purity and homogeneity. We constructed a degrading
Al batching that starts out with Perfect Al batches and finishes with worst-case batches. We wanted
to study an algorithm that might simulate some production scenarios, where the Al-Assistance
algorithm starts strong but degrades over time (i.e. due to faulty online learning, etc). To do so,
this "algorithm" initially replicates the batch purity/homogeneity of the Perfect Al - and then at a
certain cut-off point will create increasingly more impure/nonhomogenous batches. To construct
the Degrading Al batching we progressively grow the batching from both ends by taking turns
between adding a new perfect batch in front and a new worst-case batch as we are growing from
the end until all the data is contained in a batch. Because we were studying overreliance as a metric,
we wanted to see whether users would accept the faulty recommendations given by an Al that
started off perfect and degraded. Figure 5 displays the resulting batching for our study data set.
The average homogeneity is 0.711.

5 METHODS
5.1 Participants

For Study 1, 2, 3, and 4 we recruited 165 total participants from Amazon Mechanical Turk [44].
Participating workers received a $5.50 compensation based on an estimated work of 40 minutes
for a projected US federal minimum wage (75%). The workers provided informed consent before
completing the study. After the labeling task was complete, participants also answered demographic
questions and questions about prior experience with Mechanical Turk as well as free-form questions
explaining their impressions of the labeling system.
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5.2 Data and Integrity Checks

5.2.1 Integrity Checks. We performed several integrity checks for our participants. Similar to prior
studies deployed on Mechanical Turk [27], we excluded workers whose mean rating time was less
than 5 seconds and did not deselect any item at any point during the labeling task. Deselecting
is an indicator of paying attention to the task throughout and not merely clicking through every
single batch, without reading the items. We also removed workers who had uniform responses
(SD < 5) in the survey responses. We also removed individuals from the study who fell outside
of the mean +2SD statistic for each of the dependent variables. This process left us with 156
participants. Examining the quality of the free-form responses at the end of the study showed that
the manipulation checks were effective.

5.2.2  Accounting for Breaks: Multi-tasking Users. Prior work has shown that Mechanical Turkers
multi-task, often taking breaks between tasks [33] or doing multiple HITs (Human Intelligent
Tasks) simultaneously. While we offered a $1.00 additional bonus to workers who completed the
task efficiently, we observed that some workers took long breaks while completing tasks.

Anticipating the need for analyzing worker behavior, we instrumented the study interface to
track pertinent events such as when a worker initially loaded into the labeling task, applied a label
etc. Using this event stream we were able to construct a per second timeline for each worker as
they performed the labeling task. Figures 6 and 7 show two examples of event timelines of workers
who took long breaks during the labeling task.

To calculate actual labeling time, the period in which the worker was actively engaged, we
removed individual trials that fell out of the mean +2SD statistic for time spent on each individual
trial.

5.3 Metrics Calculated

We measured the accuracy of labels (score out of 240 total labels), total time taken to complete
labeling, user experience and trust towards the system. For each user, we collected the following
dependent variables.

e User Experience We used the User Experience Questionnaire (Short Version) [34, 56], to
measure perceived efficiency and enjoyment of the tool.

e Duration was calculated by measuring the time spent labeling in seconds on each labeling
task. All user interactions were logged from the beginning of the labeling task to the end of
the labeling used for Study 2, Study 3, and Study 4.
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Demographic

Mechanical Turk Experience Less than 6 months (12.8 %),6 months to a year (14%), 1-2 years
(27%), 2-3 years (16.7%), More than 3 years(29.5%)

Language English (82.7%), Tamil (10.9%), Portuguese (3.8%), Malayalam
(0.06%), Hindi (1.3%), Chinese (0.06%)

Education Middle School (5%), High School (22%), Bachelors or
Higher(73%)

Al Experience I closely follow Al-related news (23.1%), I have extensive expe-
rience in Al research and/or development (8.3%),I have heard
about Al in the news, friends, or family (50%),] have never heard
of Al (3.8%), I have some work experience and/or formal educa-
tion related to AI (14.7%)

Table 3. Participant Demographics, N=156

e Total Duration was calculated by measuring the total time spent labeling in seconds. We
used this metric in analysis for Study 1 since we were comparing 60 batching trials (4 items
per trial; 240 total individual items) to 240 individual trials for non-batching conditions.

e Accuracy was measured as the percentage of individual items users labeled accurately.

e Overreliance When batching was involved across conditions (Study 2, 3, and 4), we calculate
overreliance as the total of times a user followed the batched recommendations in assigning
a batch the same label when the batch was incorrect.

e Agreement When batching was involved across conditions (Study 2, 3, and 4), we calculate
agreement as the total of times a user followed the batched recommendations in assigning a
batch the same label.

5.4 Demographics and Prior Experience

We asked all participants involved in Study 1, Study 2, Study 3, and Study 4 about their demographics
(primary language, education) and previous experience with Mechanical Turk HITs as well as
with Al “What kind of exposure have you had to Artificial Intelligence (AI)” (1= I don’t know
what machine learning is., 5= I have implemented a Machine Learning Algorithm). We present
participant demographics in Table 3.

6 STUDY 1: BATCHING, TASK COMPLEXITY, ACCURACY, AND SPEED

In Study 1, we investigated the role of batching and task complexity and its impact on speed and
accuracy of a labeling task. To evaluate the accuracy and speed in which users solve labeling
tasks with Al-assisted batching we deployed the system on Mechanical Turk. The task begins with
a consent form that describes procedures, risks, benefits, compensation, and participant rights.
Participants are then randomly assigned to one of the following conditions (the experimental
groups are further described in Table 1):

Simple task with single-item (Group 0)

Simple task with batch (multi-item) (Group 1)

Complex task with single-item (Group 2)

e Complex task with batch (multi-item) (Group 3)

After completing the labeling task, users completed a post-survey that asks demographic ques-
tions, as well as open-ended questions about their experience with labeling. In Study 1, we are
studying batching as a UX paradigm, keeping the batching algorithm constant across all conditions
but manipulating the number of items recommended and number of labels in a task as a proxy for
task complexity. This first study is a 2x2 between subjects study.
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6.1 Experimental Manipulation

In Study 1, all participants interacted with the Baseline Al batching algorithm. The data and integrity
checks described in Section 5.2 yielded a total of 36 participants. In Study 1, we addressed the
following research questions:
RQ1: Does batching impact the outcome (accuracy score and time spent on task) of the labeling
task?
RQ2: How does task complexity (vocabulary size) impact the outcome of data labeling?

6.2 Results

When presented with a batch labeling interface to help complete labeling tasks, do crowdworkers
label more efficiently (accurately, faster)? We present our findings below.

6.2.1 Labeling Performance: Accuracy. We calculated a 2x2 ANOVA to compare the main effects of
batching (batching vs. none), task complexity (vocabulary size=2 vs. vocabulary size=12), and their
interaction effect on accuracy. There were no significant differences for accuracy for batching or
for vocabulary size. Neither was there any significant Batch x Complexity interaction.

6.2.2 Labeling Performance: Duration. We calculated a 2x2 ANOVA to compare the main effects of
batching (batching vs. none), task complexity (vocabulary size=2 vs. vocabulary size=12), and their
interaction effect on duration. We found a significant effect of batching on duration (F; 3,=23.82,
p<0.001). Tukey post hoc analysis showed that participants were significantly faster in Batching
(628.14+215.35) than in No-Batching conditions (1261.73+455.49) (p < 0.05). We also found a
significant effect of task complexity on duration (F; 52 = 23.75, p<0.001). Tukey post-hoc analysis
showed that participants in simple task conditions (vocabulary size=2) (738.70 + 317.17) performed
faster on tasks than participants in complex task conditions (1361.2+ 450.13) (p < 0.05).

In Study 1, we kept the algorithm used for batching constant across all conditions. The results
from Study 1 demonstrate that batching has the potential to increase the speed of users in labeling
tasks. We wanted to further explore the impact of quality of Al on batching performance and
overreliance in Study 2. In Study 1, we also withheld information from participants about the
batch recommendations being Al-driven and wanted to further investigate the role of this kind of
feedback on performance, overreliance, and agreement with the batches.
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Fig. 8. Total time spent on task for conditions in which batching occurred and conditions in which batching
did not occur in Study 1.
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Fig. 9. Overreliance results from two Studies.

7 STUDY 2: INVESTIGATING FEEDBACK IN LABELING TASKS

The results of Study 1 show the benefits of a batch labeling interface (as compared to a single-
labeling interface) for complex tasks in a crowdworker labeling task. For Study 2, we wanted to
see if there would be differences if we told participants when they were interacting with an Al
("The AI System thinks these batches should have the same label") vs. when we did not give them
feedback. We chose to study this in the context of the more complex task determined by Study
1 (12 labels, as opposed to 2), since the results of Study 1 showed the potential of batching for
more complex tasks and prior research shows that people overrely or reach a point of complacency
under more extreme workload conditions [32]. More specifically, in Study 2, we investigated the
following research question: RQ3: Does telling users that the recommendations are from an Al
impact the outcome (accuracy score, time spent on task, agreement with batches, and overreliance).
Participants were randomly assigned to one of the following conditions (the experimental groups
are further described in Table 1):

o Complex task, multi-item batches, Baseline Al No Feedback (Group 3)
o Complex task, multi-item batches, Baseline Al, Feedback (Group 5)

7.0.1  Accuracy, Duration, Agreement and Overreliance. We ran a one way ANOVA for baseline
participants who did not receive feedback and groups who did receive feedback (groups 3 and 5).
We found no significant effect of feedback on accuracy (F;2; = 0.72 n.s.). We also ran a general
linear mixed-effects model analysis of variance for duration for baseline participants who did not
receive feedback and groups who did receive feedback (groups 3 and 5). We found no significant
effect of feedback on duration. We also ran a one way ANOVA for baseline participants who did not
receive feedback and groups who did receive feedback (groups 3 and 5) to investigate the impact of
feedback on agreement with the Al and overreliance on the AL We found no significant effect of
feedback on agreement (F; 2; = 0.08 n.s.). However, there was a significant effect of feedback on
overreliance (Fy 21 = 11.27 p < 0.01). Tukey post-hoc analysis showed that users relied more on the
Al when they were given feedback (0.51 + 0.19) about the source of the batching (“The Al System
thinks these batches should have the same label"), rather when they were not provided with any
information (0.20 + 0.25) p < 0.01 . Results can be seen in Figure 9b.
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Given these findings, we moved forward with the investigation of RQ4 in which we ran a
between subjects study that investigated the impact of Al Quality (Baseline Al Degradation Al,
and Perfect Al) on speed, accuracy, agreement, and overreliance. All three conditions included the
feedback ("The AI System thinks these batches should have the same label").

8 STUDY 3: INVESTIGATING QUALITY OF THE Al, Al AGREEMENT, AND
OVERRELIANCE

We wanted to further investigate the impact the quality of the Al-driven batching can have on
accuracy, agreement with batches, speed and overreliance. To compare our baseline Al batching to
other Al conditions that might occur in production systems, we simulate two Al systems: Perfect
Al and Degradation AL As introduced in Section 4, Perfect Al batching produces perfect batch
recommendations. In Degradation Al batching, the quality of the batch recommendations decreases
over the course of batches. To address RQ4, we measure overreliance on the batching system as
the percentage of incorrect recommendations by the batching system that a user assigns the same
label.

8.1 Experimental Manipulation
In Study 3, we investigate the following question:
RQ4: How does the quality of the Al in batching impact the outcome (accuracy score, time spent
on task, agreement with batches, and overreliance) of the batching task?
Participants were randomly assigned to one of the following conditions (the experimental groups
are further described in Table 1):
e Complex task, multi-item batches, Degradation Al, Feedback (Group 4)
e Complex task, multi-item batches, Baseline Al, Feedback (Group 5)
e Complex task, multi-item batches, Perfect Al, Feedback (Group 6)

8.2 Results

8.2.1 Labeling Performance: Accuracy and Duration. When we consider user performance on
labeling tasks, we measure two metrics: accuracy. We calculated a between-subjects ANOVA
comparing the accuracy across the different batching conditions (Perfect AL, Degradation Al Baseline
Al). We found a significant effect of the type of Al used for accuracy (F;49 = 3.45, p <0.05). Tukey
post-hoc analysis revealed significant differences between the Baseline AI (0.39 + 0.24) and the
Perfect AI (0.65 + 0.27), with those in the Perfect Al condition labeling items more accurately than
those in the baseline condition (p <0.04). For duration, a general linear mixed-effects model (a.k.a.
mixed model) analysis of variance was used. Al quality was modeled as a fixed effect, while trials
were nested within each subject and modeled as a random effect. We found no significant effect of
the type of Al used on duration (F242646 = 3.04 n.s.).

8.2.2 Agreement and Overreliance. In Study 3, we were investigating how the quality of the Al
impacts the degree to which users agree with the suggested items (giving all four items the same
label) and overrely (giving all four items the same label when they should not have the same label).
The ANOVA revealed significant differences for agreement for AI Quality (Fz,49=6.90, p<0.01). Tukey
post-hoc analysis revealed significant differences for agreement between the Degradation AI (0.72 +
0.27) and agreement for the Perfect AI (0.98 + 0.04) p <0.01, showing that people agree significantly
more with batches if the Al Quality is perfect.

Given our definition of “overreliance” in this context, it is impossible to overrely on batches
recommended by the Perfect Al since all Perfect Al batches are, by design, coherent (have the same
label). We ran an ANOVA comparing overreliance across the three Al quality conditions (Fz49 =
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25.7, p < 0.001). Tukey post-hoc analysis showed significant differences between thePerfect AI (0.0
+ 0.0) and Baseline AI (0.51 + 0.19) p < 0.001, significant differences between Baseline AI (0.51 +
0.19) and the Degradation AI (0.26 + 0.26) p < 0.01, and significant differences between Degradation
AT (0.26 + 0.26) and thePerfect AI (0.0 + 0.0) p < 0.01. Results for differences in overreliance can
be seen in Figure 9a. Study 3 demonstrated that when the Al is not perfect, as to be expected in a
realistic scenario, labelers overrely (agree with the Al when they should not). We also find that
users overrelied more on the Baseline Al than the Degradation AL These results led us to investigate
mitigation of overreliance in our fourth study. Given that people overrely when presented with
Baseline Al or Degradation Al what can the kind of information can we provide in the interface to
mitigate their overreliance?

9 STUDY 4: INVESTIGATING OVERRELIANCE MITIGATION

In Study 4, we investigate the mitigation of overreliance by addressing the following research
questions. We evaluated the effectiveness of ameliorating overreliance by implementing two
mitigations in Study 4 as seen in Figures 10 and 11.

RQ5: Can we mitigate overreliance on Al-assisted batching by asking users to rate the batches
suggested by the Al system?

RQ6: Can we mitigate overreliance on Al-assisted batching by signaling to users that their
responses will help improve the Al’s batch recommendations in the future.

Participants were randomly assigned to one of the following conditions (the experimental groups
are further described in Table 1):

Complex task, multi-item batch, Baseline Al, Feedback, No Mitigation (Group 5)
Complex task, multi-item batch, Baseline Al, Feedback, Rating (Group 7)

Complex task, multi-item batch, Baseline Al, Feedback, Machine-Teaching (Group 8)
Complex task, multi-item batch, Degradation Al, Feedback,Rating (Group 9)

Complex task, multi-item batch, Degradation Al, Feedback, Machine Teaching (Group 10)
Complex task, multi-item batch, Degradation Al Feedback, No Mitigation (Group 4)

9.1 Mitigation 1: Machine Teaching

In this mitigation, we informed users that they were collaborating with the Al system to recommend
better batches. Users were told, “Your labels help train the Al system to recommend better batches.”
This mitigation was meant to signal that all the batches were not necessarily perfect and that users
were working with the Al to ultimately help improve the batches for future uses of the system.
Consistent with prior work [50], this mitigation meant to frame the relationship between the
Al-driven batching system and the user as a collaborative one, in which the labeler works with the
recommended batches to improve them for future users.

9.2 Mitigation 2: Rating

In the Rating Mitigation, users were informed that the quality of batches would be rated at the
completion of the study, signaling that the Al is not perfect. Users were notified that “You will be
asked to rate the Al on the quality of these batches in a survey”.

9.3 Experimental manipulation

For Study 4, the attention check described in Section 5.2 yielded 77 participants. Participants
were assigned to either the Baseline Al condition, the Degradation Al condition, or the Mitigation
condition (None, Rating, Machine-Teaching).
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0/60 labeled
¥ The Al system thinks these items should have the same label
Your labels help train the Al system to recommend better batches.
Current Items Select All Items 4/4
Item 0 : Item 1 : Item 2 : Item 3
I need assistance as I've What steps can I take when I have lost my credit card I would like to know what
example lost my credit card I lose my credit card? and I want to deactivate it to do if I lose my credit

card

Fig. 10. Machine Teaching Mitigation pictured above in which users are notified that their responses help
train the Al to give better batches.

0/60 labeled

‘& The Al system thinks these items should have the same label
You will be asked to rate the Al on the quality of these batches in a

survey.

Current Items

Select All Items 4/4

example

Item 0 : Item 1 : Item 2 : Item 3

Where can I find my bank How to search bank routing  How do I know the routing How to locate bank
routing numbers for numbers? number? routing number?
money transfer?

Fig. 11. Rating Mitigation pictured above in which users are notified that they will be rating the quality of
the batches in a survey at the end of the study.

9.4 Results
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Fig. 12. Duration for Al Quality and Mitigation measures in Study 4.

9.4.1 Accuracy and Duration. We first ran a 2x3 ANOVA to compare the main effects of Al
Quality (Baseline AI and Degradation Al) and Mitigation type (Rating vs. Machine-Teaching vs. No
Mitigation), and their interaction effect on accuracy and found no statistically significant effect of
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Fig. 13. Overreliance and Agreement Results from Study 4, in which we investigated the effect of the three
mitigations (Machine-Teaching, Rating, None) across different Al qualities (Degradation, Baseline) on user
agreement and overreliance.

mitigation type on accuracy (F271 = 0.23 n.s.), no significant effect of Al quality on accuracy (Fy 71 =
0.50 n.s.) and no significant interaction effect (F271 = 1.124 n.s.).

For duration, a general linear mixed-effects model (a.k.a. mixed model) analysis of variance was
used. The mitigation condition (Rating, Machine-teaching, No Mitigation) and the Al type (baseline,
degradation) were modeled as fixed effects, while trials were nested within each subject and modeled
as a random effect. We found a significant interaction effect between Al quality and mitigation type
(F2.74.382 = 3.68 p <0.05), and no significant main effect for mitigation type (F2 74352 = 2.00 n.s.) or
Al quality (F374374 = 0.45 n.s.). Post-hoc tukey analysis revealed significant differences (p = 0.045)
between Rating Mitigation x Baseline AI (5.09 +8.19) and No Mitigation x Degradation
AI (2.61 + 4.95 ) and marginally statistically significant differences (p = 0.072) between Rating
Mitigation x Baseline AI (5.09 + 8.19) and Rating Mitigation x Degradation AI (2.80
+ 4.77 ) . Figure 12 shows results of the experiment. The significant time difference between the
Rating Mitigation and other groups without a decrease in accuracy suggests that users are thinking
more about their decision making when they are presented with the Rating Mitigation.

9.4.2 Agreement and Overreliance. We ran a two-way ANOVA comparing overreliance across the
two Al quality conditions (baseline, degradation) and three mitigations (Machine-Teaching, Rating,
None). We found no statistical differences for mitigation type (Fz7; = 0.622 n.s) or interaction effects
(F2.71 = 0.151, n.s.). We did find a significant effect for AI Quality (F; 7;= 17.24, p < 0.001), supporting
our findings from Study 3 that AI Quality has an impact on overreliance. Tukey post-hoc analysis
showed significant differences between the Degradation AI (0.29 + 0.25) and Baseline AI (0.52 +
0.20) p < 0.001. We also ran an ANOVA to investigate user agreement with the batching system. We
found there was also a statistically significant main effect of Al quality F;7; = 5.078 p < 0.001) on
agreement. There was no statistically significant main effect mitigation on agreement (F,7; = 0.48
n.s.) and no interaction effect (Fz7; = 0.06 n.s.). These result were surprising since our mitigations
were designed to decrease overreliance and we saw no effect on overreliance.
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10 USER EXPERIENCE

For each of the studies, we ran a survey to investigate the effect of our conditions on user experience.
For each study we ran an ANOVA to understand the effects ofthe various conditions on the
user experience. In Study 1, we investigated the impact of batching and task complexity on user
experience. In Study 2, we investigate the effect of feedback on user experience. In Study 3, we
investigated the effect of Al Quality on user experience. In Study 4, we investigated the effect of Al
Quality and mitigation types on user experience. These user experience measures were an average
of eight questions asked in the post survey on a 1 to 7 likert scale about the user’s experience
on the platforms [34, 56]. We did not find any statistically significant effects with respect to user
experience. However, we followed up with open-ended questions that give us insight into user
reactions to the labeling assistance tool. We describe these findings in the next section.

11 OPEN-ENDED QUESTIONS

At the end of the labeling task, we asked each participant five different open-ended questions,
“Please describe why you think the recommendations in the labeling tool were helpful/not helpful”,
“How would you describe your experience with the labeling tool?”, “What did you like best about
your experience with the labeling tool?”, “What did you like least about your experience with the
labeling tool”, and “What would you change about the labeling tool?” Two of the co-authors looked at
responses for each group (referenced in Table 1) and extracted themes. We list those results below.

11.0.1  Users Noticed the Quality of the Al. Across the groups, users commented on the quality of
the AL Particularly for participants who were given the Degradation AI (Group 4, 9, and 10 in Table
1), users noticed the quality of the batches decreasing after the first 30 recommendations.

The first 30 sets were grouped well but the last 30 were almost all completely unrelated (Participant
73, Degradation Al Group 4).

I think they were helpful till about half way through but the messages got vague or used uncommon
language. I think the AI was good at certain words but it needs to learn a bigger vocab (Participant
67, Degradation Al, Group 4)

Users also commented on the quality of Al for the Perfect conditions. Particularly for the Perfect
Al, users applauded the system.

The work was already pretty much done for me (Participant 56, Perfect Al, Group 6).
The system was more advanced than I thought. (Participant 61, Perfect Al, Group 6)

The recommendations were mostly related with the label so it was very helpful. Only in few cases I
had to change it (Participant 123, Baseline AI, Group 7)

11.0.2  Complex Tasks Confuse Users. As Study 1 demonstrated, users take longer on complex tasks
(vocabulary=12). The feedback from our open ended responses gave further evidence that labels
confuse individuals.

“I think there were too many categories to choose from and that just leads to confusion” (Participant
87, Baseline A, Group 5).

11.0.3 Batching improves User Experience Except When it Does Not. While we did not see any
statistical differences in the user experience metrics we collected. Some comments across the
different groups that employed batching showed that users felt that batching improved their overall
experience.
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At first the idea of doing 60 groups in a row seemed like a lot but it ended up being a lot easier and
more efficient than I expected (Participant 50, Baseline AI, Group 3).

However, users commented on the frustrating user experience of un-checking and rechecking
items when presented with bad batches in the Degradation Al Other users complained about the
large number of categories.

12 DISCUSSION

Our results demonstrate that batching can improve time and accuracy. This outcome relies partly
on the complexity of the task and the quality of the Al, since our results show that users have
to do more work when the batches recommended for one label are not coherent. We present
design recommendations for labeler-Al-batching system interaction emerging from our results and
experience in building and studying the system.

12.1 Design Implications

In the real world, the people who create tasks for labelers do not know the ground truth of the labels.
The purpose of the labeling task is to collect the ground truth. We keep this in mind as we make
recommendations for our dataset. Certain metrics like mean pair-wise similarity can be calculated
in the absence of ground truth knowledge, while metrics like homogeneity and purity cannot. In
the real world, individuals assigning these labeling tasks would not have access to metrics like
homogeneity and purity, i.e. further challenges arise for them in understanding how well a batching
algorithm works and, correspondingly, what the impact will be on the performance of the labelers.
In some citizen science projects, the administrators (professional scientists) sometimes check the
quality of their volunteer labelers by inserting test items which have known ground-truth answers
into the labelers’ workflow [69]. If needed, it may be possible use a similar approach to obtain
estimates of homogeneity and purity in real-world batching experiences.

As we discussed earlier, labeling usually occurs as part of the team’s work in data science
[35, 43, 48]. Teams frequently engage in a division-of-labor according to specialized roles and skills
[19, 30, 40, 68, 69]. This paper can help with that division-of-labor, especially in view of increasing
Al capabilities that can shift the balance of initiative between human and Al [14, 26, 58, 63]. Our
results can further advise administrators and data scientists as they set up the tasks of labelers
[76]. When is batching helpful? When is a simpler user interface more beneficial? We will provide
summary answers to those questions in this section.

12.1.1  Overreliance. This study design allowed us to operationalize overreliance [21, 23, 47, 52] by
defining it as the degree to which users agree with a batch recommendation from the Al but are
incorrect (e.g., similar to [58]). We explored different AI qualities in Study 3 (degradation, baseline,
perfect) and found significant differences in quality not just when the Al is perfect, but also between
the degradation Al and the baseline Al In fact, users overrelied on the baseline Al almost twice as
much as they did for the degradation Al. Our results show that the quality of the Al impacts the
degree to which users agree with batch agreements, showing that users notice the quality of the Al
when making decisions. Our open-ended responses showed that users noticed the quality of the Al
began to decrease.

This might explain why users did not overrely on the Degradation Al as much as they did on the
Baseline in which the quality of batches remained constant throughout the labeling task. We found
that users who received the feedback, “The AI System thinks these batches should have the same
label” were more likely to overrely (agree with the AI's recommendations) and be incorrect twice
as much as when they did not see this feedback from the system. This distinction - explicitly telling
users that the recommendations were Al generated - resulted in this overreliance (see [45] for
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similar evidence of human overreliance on Al). Prior work on automation bias in clinical decision
support systems found several mitigators of overreliance, including position of advice on the screen,
confidence levels attached to the automated recommendations and providing information rather
than recommending [21]. The position and wording of our feedback (authoritativeness of the
statement) may have impacted the degree to which users overrelied on the system.

12.1.2  Select-All functionality should only be used if there is certainty around the similarity of
batches. In all of our conditions, all items in batches recommended to individuals were selected by
default. When items in the batch were not coherent (did not all have the same label), users expressed
frustration over having to “uncheck” items and do more work, particularly in the Degradation Al
condition.

After the first 30 sets the inquires were all unrelated and it was tedious to uncheck then check the
relevant inquiries and assign labels (Participant 73, Degradation Al, Group 4).

If metrics like pairwise-similarity and other features (n-grams) used in the batching algorithm
indicate high levels of similarity, Select-All can be used. However, if items are not similar, having
all items pre-selected by default leads to less optimal user experience for the user. Alternatively, if
the uncertainty about items is known upfront, uncertain items can be displayed unselected per
default (e.g. in our NN algorithm, a similarity threshhold could be used).

12.1.3  For batching systems with varying batch sizes, the number of items recommended in a batch
should depend on the similarity of items in the batch. In our labeling tool, the number of items
displayed on a page was fixed to four per batch. In conditions where the Al was perfect, all four
items were to be assigned the same label. Users in this condition commented on how helpful they
believed the system to be: “It removed whatever doubt I might have had about labeling categories”
(Participant 56, Perfect Al, Group 6). However, in conditions in which the Al was not perfect, four
items seemed like too many items to users. "I would give some kind of guideline for times when the
results were mixed. Perhaps reduce the number of results at times too. Four seems like a lot” (Participant
88, Baseline Al, Group 5) . In future designs, the number of items per batch could rely on metrics of
similarity that can be extracted from the data. For example, if two items (Item 1 and Item 2) in a
dataset are more similar than when a third item is added (Item 3), only Item 1 and Item 2 should be
presented to the user as a batch. It may also be useful to allow labelers to adjust the size of their
batches as needed, since cognitive load might vary from one labeler to another. Some participants
complained that four is too much, while others did not mind. Giving users this sense of agency
can potentially improve the user experience for the labeler. Prior work has shown the benefits of
adapaptible interfaces in mitigation overreliance [41]. In an alternate user experience design, we
can also envision the user loading more items dynamically (e.g. with a "More Like This" button)
and, based the users ongoing learning of the data characteristics, the Ul will display more items in
decreasing similarity. Eventually, the items might reach a cut-off and require a different label at
which point the user could switch over to a "different label" batch loading.

12.1.4  Feedback Impacts Performance. The results from Study 2 showed that participants who were
presented with the following feedback (“The AI System thinks these batches should have the same
label”) overrelied more than those who did not see the feedback, suggesting that when participants
think the batches are Al-recommended, they rely on the batches more than if users were told
they were not recommended by an Al. We suggest that designers of labeler-Al-batching system
interaction should consider the balance between avoiding user overreliance on the system and user
time and accuracy by examining how design choices can affect how users perceive how the batches
are made. For example, do labelers perceive the batches to be Al-driven? Do labelers perceive their
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selection is helping to train a less mature AI? This consideration can assist in designing systems
that discourage overreliance so that labelers can exert critical judgement over the batch suggestions
and create higher quality labeled data. It is also possible that the particular Machine Teaching
mitigations we employed were less effective than other kinds of mitigations that cause a labeler to
reflect mindfully on their decisions, which may be useful in reducing overreliance. For example,
feedback could be given to shown how often the labeler seemed to be relying on the batch or how
quickly they were labeling. This is an open problem for future study.

In Study 4, we saw that users took a much longer time on average on a labeling task in the
Rating Mitigation x Baseline AI condition. One potential explanation for this is that users
felt the need to concentrate more on the batches since they would be asked to rate the system
upon completion of the labeling task. We did not observe this same effect for users in the Rating
Mitigation x Degradation AI condition. One potential reason for this is that the Degradation
Al starts with perfect batches and degrades over time, potentially decreasing the amount of time,
while the Baseline Al has the same quality recommendations throughout, sometimes imperfect. For
example, a participant in the Baseline condition said, ‘T would give some kind of guideline for times
when the results were mixed. Perhaps reduce the number of results at times too. Four seems like a lot”
(Participant 88, Baseline Al, Group 5), suggesting that users notice the quality of the suggestions in
the Baseline AL If they begin to doubt the quality early on, they may on average spend longer time
on each labeling task, especially since they are required to rate the Al at the end of the study. While
we saw increased duration for one of our mitigation conditions (Rating Mitigation) and no changes
in accuracy, future work can further investigate other mitigation strategies to achieve improvement
in both accuracy and duration. The increased duration in the Rating Mitigation condition shows
that users can spend a longer time on a task without necessarily being more accurate. Future
work can attempt to communicate the collaborative nature of the task (between the human and
the Al-driven assisted labeling tooling) through alternative ways to increase accuracy, decrease
duration, and decrease overreliance.

12.1.5 Label Suggestions May Help: Perfect Batches don’t Yield Perfect Scores. In Study 3, we found
that there was an 98% agreement rate by labelers with the batches for the Perfect AI conditions.
However, the accuracy score was only 65%. This means that in a scenario in which all the items
in a batch had one label, individuals still mislabeled the content, assigning the same labels to the
batch but the incorrect label. As we reported in Section 11.0.1, one participant even commented,
“The work was already pretty much done for me.” (Participant 60, Perfect Al, Group 6). This kind
of attitude points to a different type of overreliance compared to the one we measured. A way to
address this kind of interaction is to not only suggest items that are likely to have the same label,
but suggest the labels themselves for items - but only in cases in which the system is sufficiently
confident about those label suggestions.

12.2 Ethical Implications for Labeling

We must acknowledge that many crowdworkers on these platforms are not one-time users, but
also individuals who earn their income through these platforms [71]. In the age of crowdwork-
ing platforms, scholars have categorized two classes of Mechanical Turk Stakeholders: one that
outsources small repetitive tasks and one that is on the receiving end doing these mundane tasks
[55]. This taxonomy results in a dystopian situation where people do not know if a machine or a
human is handling the mundane task at hand. With any platform involving crowdworkers, such
dynamics must be considered. The goal of the labeling system is not to only benefit the individuals
creating tasks, but also to improve the user experience of labeling. By speeding up the process
through batching, all of the individuals in the crowdworking pipeline (both those assigning tasks
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as well those doing them) benefit. If designed correctly, crowdworkers can label more efficiently. In
medical domains and others that require SME input for labeling, SME’s time is valuable, limited,
and expensive. In scenarios in which labeling is required from subject matter experts, our results
show that batch-labeling can speed up the number of items individuals are able to label correctly
in a set amount of time, leading to more robust, accurate Al systems as a result.

13 LIMITATIONS AND FUTURE WORK

The batch labeling system we introduce is meant to help labelers to label text-based unstructured
data in different contexts by framing the labelling task as a labeler-machine collaborative effort.
Using this framing, the resulting design implications may apply to cross-media labelling situations,
where a labeler can also work together with an Al-labeling assistive system. Previous works
highlight that repurposing labeling tools designed for one medium to another is viable [9, 18, 73]
and to fortify the applicability of our findings in the design of cross-media labelling tasks we
recommend the following future work.

First our study was conducted on one dataset that consisted of short structured data. Future
work should explore how the experimental conditions in this study impact different data sets that
are structured differently than the dataset we explored. Secondly, we acknowledge the limitations
for recruiting participants from Mechanical Turk. Crowdworkers recruited from Mechanical Turk
are not subject matter experts. Results and respective design implications may differ for similar
studies for subject matter experts across various domains. Future work should investigate batching
accuracy, speed, agreement and overreliance for Subject Matter Experts.

Working with crowdworkers has limitations in terms of the quality of the data collected [42].
While the accuracy in our studies is low, our goal is not to train a model. Rather, we are trying to
understand factors that could influence the labeling practices that are part of training a model. In
principle, we wanted to choose a task that is difficult (for this particular set of labelers), exactly
because that level of difficulty may expose factors that would be less apparent in an easier task.
Lastly, while we did not find statistically significant results for our mitigations, we found that
feedback has the potential to impact outcome of the labeling task (i.e. duration in Study 3). Future
research should explore other mitigations for overreliance and their impact on user performance.

14 CONCLUSION

In this paper, we conducted four studies to investigate the role of batching, task complexity, and Al
Quality on labeling performance. Our studies demonstrate that “batch-labeling”, an Al-assisted UX
paradigm leads to labelers completing tasks more accurately (given the quality of the Al) and faster.
By manipulating the AI Quality (Degradation Al, Perfect Al Baseline Al) across conditions we also
find that the AI Quality impacts the degree to which users agree with batching recommendations
and overreliance on batching recommendations. More research is needed to design and investigate
overreliance mitigations in a labeler-Al-batching system interaction context. Our findings offer
implications for the design of batching labeling systems and for work practices focusing on labeler-
Al-batching system interaction.
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