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ABSTRACT
In Human-AI collaborative settings that are inherently interactive,
direction of communication plays a role in how users perceive their
AI partners. In an AI-driven cooperative game with partially ob-
servable information, players (be it the AI or the human player)
require their actions to be interpreted accurately by the other player
to yield a successful outcome. In this paper, we investigate social
perceptions of AI agents with various directions of communica-
tion in a cooperative game setting. We measure subjective social
perceptions (rapport, intelligence, and likeability) of participants
towards their partners when participants believe they are playing
with an AI or with a human and the nature of the communication
(responsiveness and leading roles). We ran a large scale study on
Mechanical Turk (n=199) of this collaborative game and find sig-
nificant differences in gameplay outcome and social perception
across different AI agents, different directions of communication
and when the agent is perceived to be an AI/Human. We find that
the bias against the AI that has been demonstrated in prior studies
varies with the direction of the communication and with the AI
agent.

CCS CONCEPTS
• Human-centered computing → Collaborative interaction; Em-
pirical studies in collaborative and social computing.
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1 INTRODUCTION
Interactivity, which includes responsiveness [53] and direction
of communication [38] has been an important aspect of human-
computer interaction as it can impact both user experience and
social perception. Given the pervasiveness of AI in collaborative
spaces, many HCI researchers are investigating factors that lead to
successful outcomes of these collaborative exchanges [24, 41, 55].
Researchers have also investigated user perceptions of AIs in these
spaces [50, 62], since social perception of one’s partner in a col-
laborative space can impact the outcome of the collaboration. The
direction of communication (i.e. who is “leading” the interaction) in
Human-AI collaborative spaces is important to study given that AI
is being used increasingly in collaborative spaces, including chat-
bots being employed for tutoring [23], collaborative writing [14]
or even as virtual nurse agents in hospitals [9], and how an update
to increase AI performance may even hurt team performance [5].

Cooperative partially observable games (CPO) [33] are cooper-
ative games in which there is information hidden from partners.
These games pose challenges to AI researchers as they require re-
searchers to consider theory of mind [7]. While in the past there
have beenmany strides made in competitive zero-sum games (chess,
poker, checkers) [10, 13], cooperative partially observable games
require users to interact with their partners in a way that the in-
formation being communicated is interpretable (without giving
away all of the information), and also interpreting partially visible
information. One example of such a game that has been widely
studied is Hanabi [7]. In particular, CPOs, with their focus on inter-
preting partial information and game dynamics which can include
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turn-taking, naturally lend themselves to studying directionality of
communication between AI agents and humans.

In this paper, we investigate interactions in an AI-driven coop-
erative word game that requires players to play one of two roles:
1) interpret an AI agent’s clues or 2) send interpretable clues to
the AI agent to help their partners guess a target word. Prior work
investigating social perceptions of AI agents in a cooperative game
with partially observable information has focused on one direction
of communication, with human player acting as “guesser”, i.e. the
AI agent giving clues to the human player and the player attempt-
ing to guess the target word [4]. In this work, we investigate both
directions of communication ( “giver” and “guesser”) with various
AI agents that have been trained differently and behave/interact
differently. “Guesser” and “giver” agent roles behave differently in
responsiveness and direction of communication. When an individ-
ual plays as the “giver” player, they are providing clues to the AI
agent, “steering” it in the correct direction. When the user plays as
the “guesser” player, the AI does very little adjusting to steer the
individual. Based on these characteristics, it is fair to hypothesize
that users will find the agents more likeable when they play the
role of “giver” since this role provides more control and agency
to the user. We consider these differences as we investigate the
social perceptions of the AI agents in this study. Prior work has
also investigated social perceptions in the context of one AI agent,
with one knowledge base. In this paper, we explore social percep-
tions and interactions with multiple agents to identify if agents that
are trained differently have an impact on social perceptions in the
context of directionality and AI identity perception.

We investigate the following research questions:
RQ1What are the social perceptions of an individual’s part-
ner in a AI-driven cooperative game with partially observ-
able information?
How does the direction of the communication, vari-
ous AI agents, and perception of their partner’s AI
identity affect these social perceptions?

RQ2 How is the outcome of collaboration impacted in a
AI-driven cooperative game with partially observable infor-
mation?
How does the direction of the communication, vari-
ous AI agents, and perception of their partner’s AI
identity affect the outcome of the collaboration?

In this paper, we present an online study (n=199) in which par-
ticipants played Guess the Word, a word guessing game similar to
[3, 21], with multiple AI agents in various directions of commu-
nication (as “guesser” and “giver”) and filled out a survey about
their social perceptions. We show that there are social perception
differences with different AI agents, as there are when the direction
of communication varies. We show that the bias against the AI
that has been demonstrated in prior studies [4, 20] varies with the
direction of communication and with the AI agent and that per-
formance differences vary depending on how people interact with
their perceived AI partner given the direction of communication.

2 RELATEDWORK
Our inquiry is motivated by the widespread use of AI systems in
human-AI collaborative environments. In this work, we build on

prior work that investigates human-AI interaction [4, 9, 23] by
investigating human-AI collaboration in various contexts including
varying the direction of the communication in the collaboration
and interaction with different AI agents.

2.1 Interactivity: Responsiveness, Direction of
Communication, and User Control

Perceived interactivity was originally based on a two dimensional
construct which includes (1) a users’ psychological sense of efficacy
and (2) users’ sense of a system’s interactivity [45]. This means
that a system that is perceived as interactive can take user input
and can execute on it [45, 60]. Additional research has identified an
additional construct of perceived interactivity: “direction of commu-
nication”, or the belief that two-way communication exists in the
system [38]. The perceived interactivity in systems - or lack thereof
- can impact the user experience and social perceptions individuals
have of the system and the parties with which they are communicat-
ing [62]. Interactivity, which includes responsiveness [53], two-way
communication [38], and user control [19] has been an important
aspect of Computer-Mediated Communication and impacts social
perceptions of individuals through the web [50]. Many individuals
see interactivity as encompassing a two-way communication in
which a user can play both the sender and receiver roles [19]. In
this paper, we investigate interactivity, more specifically the direc-
tionality of communication by comparing the “giver” and “guesser”
roles played by the user.

2.2 Cooperative Games with Partially
Observable Information

There have been many AI-infused word association games devel-
oped, resulting in studies on how users understand, interact and
communicate in these games [67]. Games like the ‘Taboo’ word
game [54] “forces agents to speculate about their partner’s under-
standing of the domain, rather than just performing inference on
their own knowledge,” as do games like “Hanabi” [6]. There has
been work in which AI agents have been trained to play these
games as a way of testing theories around how people interact
and communicate, but ultimately as a contribution to furthering
Artificial Intelligence research [1, 15, 25]. Other research has inves-
tigated communication in games like ‘Password’ and found that
people playing both roles (speakers and hearers) are collaborative
and considerate of one another [68]. Liang et al. investigated impli-
cature communication in Hanabi, a cooperative partially observable
game [37] that has been studied in AI literature as a CPO (coop-
erative game with partially observable information) [35]. In their
study, they found that an Implicature AI, i.e. one that implicitly
communicates information, led to a more successful outcome than
non-implicature AIs.

2.3 Human-AI Collaboration
The term “human-AI collaboration” has emerged to describe inter-
actions between AI systems and humans [2, 12, 49, 65]. Prior work
has investigated this kind of collaboration in various domains in-
cluding drawing pictures collaboratively [49], collaborating with AI
systems to automate data science projects [65]. Both of these studies
showed that while they were challenges, users remained positive
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about the collaboration with their AI counterparts. In this paper,
we study human-AI collaboration in the context of a game. Games
are frequently used as a test bed for state-of-the-art AI algorithms
and an important application domain of AI [13, 22, 58, 64].

One aspect of in collaborative games is the social perception
of one’s partner. Prior work has found that in human-AI collab-
orative games, when users perceive their partners to be human,
they find them to be more intelligent and likeable [3]. In this study,
we build on this work, by exploring the different roles in human-
AI collaborative games (interpreting your partner’s actions and
sending digestible interpretable signals). We also investigate the
interactions given AI agents that behave differently.

A few recent works explored the effect of disclosure. Shi et
al. found that people are less persuaded by an AI chatbot even
when the same dialogues are used by human interlocutors [57].
Focusing on cooperative behavior in a repeated prisoner’s dilemma
game, Ishowo-Oloko et al. found that disclosing the bot nature
averts people’s tendency to cooperate, and participants do not
recover despite experiencing cooperative attitudes exhibited by
bots [29]. These works show that it is not the displayed identity
but the perceived identity that impacts the outcome, as people still
suspected the identity of the agent, despite the display.

We expand prior work [4] that investigates the effect of disclo-
sure of AI-identity for an AI partner that has human-comparable
performance, on people’s social perception and performance in one
particular role for one particular agent. In this work, we investigate
social perception of the AI agents in the various roles played in a
human-AI collaborative context and with various AI agents. Ashk-
torab et al. found that users who believe that they are interacting
with a human (when told that they are interacting with a human)
have higher regard for their partner (i.e. find their partners more
intelligent, likeable, create, have more rapport), whereas when they
believe they are interacting with an AI they find their partners less
intelligent. That study investigated one role played by the human
in the human-AI collaboration, the “guesser”, or the individual who
has information withheld from them as they collaborate with their
AI agent and responds with guesses to the AI agent’s hints. That
work only studied this collaboration within the context of one AI
agent. We expand that study by investigating all roles (“giver” and
“guesser”) in which there are varying directions of the communi-
cation and responsiveness between the human and the AI as well
as investigating interactions with multiple AI agents with varying
knowledge bases.

2.4 Comparing “Performance” for Multiple AI
Agents

Research comparing performance of AI agents has historically been
published at AI-centric conference in which metrics like precision,
recall, AUC and other metrics are of importance, and not necessar-
ily the user reaction to those agents. On Reinforcement Learning
for games and dialogues, [16, 18, 25, 34] use multi-agent RL to learn
cooperative games with images as secret information. Li et al. [36]
learns multi-agent dialogue agents by optimizing a shared objec-
tive that encourages dialogue flow. He et al. [26] trains symmetric
dialogue agents and Hu et al. [28] uses reinforcement learning to
learn agents that play 20 questions game against a static “guesser”

simulator, where the multi-turn strategy was modeled as a Markov
decision process. For CHI Audiences, studies often take one AI
system and evaluate user reactions to one aspect of one AI system,
whether it be conversational agents [48], computer mediated com-
munication [30] or other forms of human-AI interaction [40]. In
this work, we introduce six AI agents and find differences in the
user perceptions to these various agents showing that it is simply
not enough to study human-AI interaction in the context of one AI
agent.

3 AI AGENT DESCRIPTION: A COOPERATIVE
WORD GUESSING GAME

To learn about user perceptions of their opponent in a collaborative
setting, we used a simple two-person collaborative game we call
Guess the Word, similar to Wordgame in [4] and ‘Passcode’ [21] in
prior work. In Guess the Word, the opponent has a target word and
gives clues to their partner so that their partner guesses the target
word. We refer to the player who is giving hints as the “giver” and
the player who is guessing as the “guesser”. The game begins with
the AI starting the game with a hint like “car”. After every hint, the
player inputs a guess. In this example, the target word is “engine”.
Players get 10 attempts to guess before they lose. If players input
the correct target word, they win. Figure 1 shows what a round with
the different AI agents looks like. Guess the Word is cooperative,
meaning players work together for the “guesser” to correctly guess
the secret target word based on the hints provided by the “giver”.
The cooperative nature of this game means that players are open
and honest in achieving a shared goal. In this section, we present
the technical aspects of the models (Model A, Model B, and Model
C) followed by their characteristics. Each of these models consists of
two agents that play with users as the “giver” agent or the “guesser”
agent. In essence, there are six agents, a “giver” and “guesser” for
Model A, Model B and Model C. All references to the models in
the document to reflect a human-centered perspective i.e Model
A (“guesser”) means that the user interacts with Model A as the
“guesser”. All AI agents are trained separately.

3.1 Model A: Supervised Learning
Model A agents use the target word to generate candidates using
Free Association Norm to get the corresponding words (as clues)
that lead to the secret word or all the secret words (as guesses) that
could lead from a clue, word embeddings to get the top-k most
similar words to the secret word or clue by cosine similarity, and
WordNet [52] to get all the related words of all senses of the secret
word or clue such as synonyms, antonyms, hypernyms, hyponyms,
meronyms, holonyms, and verb entailments.

3.1.1 Model A: User Plays as Guesser. Model A generates candidate
hints using free association norms, word embeddings, andWordNet
[52] (a collection of word level features like antonyms, synonyms,
hypernyms etc.) and scores the hints based on a Gradient Boosting
Machine (Supervised Machine Learning) model trained on Taboo
cards (taboo words as clues). Upon receiving a guess, it reranks the
candidates based on which is closer to the target than the previous
guess. Upon receiving a hint, the AI finds the intersecting words of
the hint and the previous hints based on paths in a knowledge graph
and ranks them based on the model. The agent uses a secret word
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(a)ModelA. User plays as “guesser”. (b)Model B. User plays as “guesser”. (c) Model C. User plays as “guesser”.

(d) Model A. User plays as “giver”. (e) Model B. User plays as “giver”. (f) Model C. User plays as “giver”.

Figure 1: Examples of gameplay for the six models with the target word “necklace”. All users in these examples did not win
(since they exhausted their 10 turns). For examples in which user plays as “guesser”, guesses appearing on right hand side
were given by the user and hints shown on left hand side were generated by the AI agent. For examples in which user plays as
“giver”, hints appearing on left hand side were given by the user and guesses shown on left hand side were generated by the
AI agent.

to generate candidates using the Candidate Generation features
(Free Association Norm, WordNet and Word embeddings), scores
the candidates based on a GBM model trained on taboo cards with
taboo words as hints and outputs the candidate with highest score
as next clue. Upon receiving a new guess from the user, the agent

re-scores the candidates treating the new guess as secret word and
outputs the candidate which is closer to the target than the guess.1

1The AI response typically takes 1-2 seconds. Across all conditions we added a delay
of 2 more additional seconds.
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Characteristic Agent Role AI Agent Percentage
Adjusts Hints/Guesses Guesser Model A 100%

Model B 100%
Model C 100%

Giver Model A 9%
Model B 9%
Model C 0%

Synonym Hints/Guesses Guesser Model A 21%
Model B 18%
Model C 33%

Giver Model A 6%
Model B 6%
Model C 5%

Antonym Hints/Guesses Guesser Model A 12%
Model B 3%
Model C 12%

Giver Model A 2%
Model B 1%
Model C 1%

Table 1: AI Agent Characterization of six AI agents in the study. Gameplays sampled include users who exhausted all 10
attempts (i.e. lost the game).

3.1.2 Model A: User plays as “Giver”. This agent generates can-
didates, scores them based on the GBM model trained on Free
Association Norm. Upon receiving a clue, the agent finds the in-
tersecting words in the paths of the clue and the previous clues
in Conceptnet, scores them based on the GBM model and outputs
the candidate with highest score as the next guess. If there are no
words intersecting, then it re-scores candidates based on the new
clue and outputs the candidate with highest score.

3.2 Model B: Reinforcement Learning
Agent-agent self-play was demonstrated to be effective for agent
improvement in many games such as Go [59], Poker [10], Starcraft
II [63] and Dota 2 [51]. We convert the GBM models into two end-
to-end neural networks which are pre-trained using similar features
for inputs and similar training targets as supervised models to equip
them with some “common sense”, followed by agent-agent self-play
asmodel fine-tuning to try to learn agent’s strategies.We “fine-tune”
both the pre-trained neural agents with self-play.We use experience
replay [39] buffer to store past games and policy gradient [61, 66]
for training. Since the game is episodic (we limit the agents to play
up to 10 turns per secret word), we are able to select and store
the games that are successful and train more on those successful
ones and success rates are approximately monotonically increased.
Since multi-agent learning suffers from non-stationary [11] issue,
we empirically found out that with pre-training in place, the agents
could still converge to 92% success rate, with 80% to start with using
pre-trained models.

3.2.1 Model B: User plays as “Guesser”. The agent is a neural
networks policy at turn 𝑡 as 𝜋𝑔𝑢𝑒𝑠𝑠𝑒𝑟 (𝑎𝑡 |𝑠, 𝑔1, ..., 𝑔𝑡−1, 𝑐1, ..., 𝑐𝑡−1;𝜃 )
modeled as a LSTM [27] with parameters 𝜃 . At each LSTM step
𝑡 , the previous guess 𝑔𝑡−1, and the previous clue 𝑐𝑡−1 are input in
the form of feature-concatenated vectors. To pre-train LSTM with

Taboo cards, we treat each training example as a 1-step sequence
where the previous guess and previous clue are zero-vectors.

3.2.2 Model B: User plays as “Giver”. This agent is a neural policy
𝜋𝑔𝑖𝑣𝑒𝑟 (𝑎𝑡 |𝑔1, ..., 𝑔𝑡−1, 𝑐1, 𝑐𝑡 ;𝜙) modeled as another LSTM with pa-
rameters 𝜙 where each step 𝑡 has 𝑔𝑡−1 and 𝑐𝑡 concatenated as input.
Similar to the Model B (“guesser”), this model is pre-trained with
trivial “1-step sequence” created from Free Association word pairs.
The pairs are sampled according to the FSG (Forward Association
Strength) scores 𝑃 (𝑔|𝑐) where 𝑐 is a FA cue and 𝑔 is a FA target, and
sample 𝑐 uniformly. We mask the previous guess with zero vectors
for pre-training.

3.3 Model C: Data Driven
Instead of creating neural networks that encode word relational
knowledge and generalize, we also created two AI agents that are
purely data-driven. The relational knowledge we use is the Small
World of Words [17] (the pre-processed 2018 data), the most recent
and largest collection of word evocation dataset that is created
through the word evocation experiment, where a word called “cue”
is shown to a participant who is asked to freely come up with
another related word called “target”. The experiment is usually
conducted on many participants for many cue words, and the data
produced from the group of people exhibits a collective nature of
word relatedness. The probabilities of a target word given a cue
word can be obtained from such data and be used as scores for a
“giver” or a “guesser”.

In evocation data, 𝑃 (𝑏 |𝑎) means when a word 𝑎 is used as a cue
word, how likely it is to propose another word 𝑏 as a response
(target). When shown the word 𝑎, one has to go through a thought
process to figure out a 𝑏. Evocation data is, in essence, an implicit
yet “conscious” evaluation of word directional relatedness. Since
evocation data is collected from a group of participants [17, 44], each
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cue-target pair can be generated from many participants. We could
derive a count-based indicator of 𝑃 (𝑏 |𝑎), a score called Forward
Association Strength (FSG) [44], a well-known metric that is useful
to human memory and cognition study. Formally,

𝐹𝑆𝐺 (𝑏 |𝑎) = 𝑐𝑜𝑢𝑛𝑡 (𝑏 as a response|𝑎 is cue)
𝑐𝑜𝑢𝑛𝑡 (𝑎 is cue) (1)

Thus, we can simply derive “giver” and “guesser” strategies using
those FSG scores.

3.3.1 Model C: User plays as “Guesser”. The agent uses a score
called BSG (backward strength) [44], which is the opposite direction
of FSG. Under BSG(𝑏 |𝑎) answers the question of “when𝑎 is used as a
target word, how likely 𝑏 is a cue to produce the target”. A common
practice to obtain BSG is by using FSG (which is mathematically
correct when the clue has equal counts, which is the case in SWOW
dataset) [44]:

𝐵𝑆𝐺 (𝑏 |𝑎) = 𝐹𝑆𝐺 (𝑎 |𝑏)∑
𝑐 𝐹𝑆𝐺 (𝑎 |𝑐) (2)

The AI Agent adopts a formula with three variables, a, b, and
c. a is a target word, b is a cue word, and c is a range of words, of
which b is a member. Thus, the agent is simply using BSG scores,
i.e. when given the target word 𝑎, the agent is a ”greedy” planner
that gives clues 𝑏 in the BSG descending order. Although simple,
the strategy guarantees that each clue is maximally informative
under the clue-independence assumption. Although we can always
design more complex models without that assumption, we observe
that such a greedy planner is surprisingly effective in practice (a
high win-rate with human) and we left further improvements for
future work.

3.3.2 Model C: User plays as “Giver”. In turn 𝑡 in the Guess the
Word, a set of 𝑡 clues {𝑐1, ..., 𝑐𝑡 } will be provided and under the
assumption that each clue has equal importance, a response 𝑔𝑡 is
chosen among candidate set 𝐺 by

𝑔𝑡 = argmax
𝑔∈𝐺

𝑃 (𝑔|𝑐1, ...𝑐𝑡 ) = argmax
𝑔

Π𝑡
𝑘=1𝐹𝑆𝐺 (𝑔|𝑐𝑘 )
𝑃 (𝑔)𝑡−1

(3)

The above formulation is derived by applying Bayesian rule twice
under one assumption: clues are independent under any condition,
i.e. 𝑃 (𝑐1, ..., 𝑐𝑡 |𝑋 ) = Π𝑡

𝑘
𝑃 (𝑐𝑘 |𝑋 ) where X can be any condition or

no condition (marginal distribution). Note that, the denominator is
a power of the marginal likelihood 𝑃 (𝑔), which is the normalized
count of a candidate 𝑔 as a target over the total counts of all targets
in the entire SWOW dataset. The intuition of Equation 3 is that the
agent tends to choose the 𝑔 that clues can increase its chance the
most for, compared to the prior of the 𝑔.

3.4 AI Agent Characterization
The AI agents used to play the Guess the Word were developed by a
team of researchers. The researchers developed six AI agents, three
for the “giver” role (AI has the target word and provides hints to the
user) and three for the “guesser” role (user has the target role and
provides hints to the AI). While we detailed the technical details
of each of the models in the above sections, we also characterize
the agents in terms of their behaviors (responsiveness (adjusting

Agent User Role Score Number of
Turns

Model A Guesser 5.43 3.05
Giver 5.90 2.21

Model B Guesser 5.55 4.90
Giver 4.77 3.88

Model C Guesser 6.06 2.37
Giver 5.47 2.52

Table 2: Score average (out of 10) and Average number of
turns (out of 10) for all agents

hints/guesses), percentage of synonyms used, and percentage of
antonyms used). Examples of the different sequences of clues given
to the user by the AI for the various models and target words can
be seen in Table 3.

If we consider the AI agent behavior for one of the models, say
theModel (“Guesser”), we can take a systematic approach as done in
prior work [21] to characterize the agent’s behavior. We can’t make
the assumption that because the model has access to Small World of
Words, it will give the clues in SmallWorld ofWords associated with
the target word “politician”, for example. In Small World of Words,
there is rich information about the word politician, i.e. examples
of politicians like “Bernie Sanders”, characterizations of politicians
like “left wing” and other actions that may be associated with a
politician like “canvassing”, yet the hints that AI agent gives for
the Model C for the word politician are: “corrupt”, “hypocrite”,
“representative”, “candidate”, and “liar”.

Figure 2: Number of turns plotted for all of the Agents.

To characterize the six variations ofGuess theWord agents (which
we will refer to as Wordbot), we ran a pilot study in which par-
ticipants were paid a $3.00 amount per 10 games, commensurate
to the average time it took them. We analyzed 269 games across
10 target words for the “giver” agents and 312 games across 10
target words for Guesser. These games were part of a pilot study.
The sole purpose of the inclusion of these games in this paper is
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to characterize the model’s behavior beyond equations in a more
digestible way to the HCI community. To maximize the amount
of guesses/hints per game, we sampled these games because they
were not won by the 10th try (they all included a set of 10 guesses
or hints depending on the role of the agent).

Adjusting hints.Howoften do theWordbots change the hint/guess
given the previous guess/hint? We analyzed the guess and hint se-
quences for each agent. When users play as the “giver”, all reactions
are unique given that Wordbot is reacting to each individual’s hints.
This is reflected by the 100% in Table 1. When users played as the
“guesser”, we calculated the number of sequences that differed from
the dominant sequence. For example, for players who exhausted
all 10 guesses for the Model B agent, the dominant sequence of
guesses for the target word “vanilla” was: ’fruit’, ’chocolate’, ’flavor’,
’bean’, ’relish’, ’shake’, ’plain’, ’plant’, ’basic’, ’standard’, ’orchid’. 18
individuals received these hints from the AI, whereas two deviated
from the dominant sequence based on the player’s guesses. For
example one of those sequences looked like this: ’fruit’, ’chocolate’,
’flavor’, ’relish’, ’shake’, ’plain’, ’plant’, ’basic’, ’standard’, ’orchid’,
’twist’. We counted the total number of sequences which dominated
from the main sequence. 9% of the games adjusted their hints for
Model B, 9% of the games had adjusted hints for the Model A, and
0% of the games adjusted their hints for the Model C. When users
played as the “guesser”, adjustments occur at the very end of the
sequence with the guess sequence remaining static for the majority
of the guesses (for all agents). Percentages can be seen in Table 1.

Synonym versus antonym hints. Synonyms and antonyms were
calculated differently for when users played as “giver” and when
users played as the “guesser”. When users played as the “guesser”,
all unique hints provided by the AI agent were marked as either
synonym or antonym of the target word. The final percentage
presented are the percentage of synonyms or antonyms among the
unique hints given. When users played as the “giver”, we found a
list of synonyms and antonyms of all the hints given by the player
to the AI agent and marked whether those synonyms and antonyms
appeared in the guesses from the AI agent. The final percentage
are the number of those synonyms/antonyms (of the user’s hints)
that the AI agent supplied as a guess over the entire set of guesses.

4 METHODOLOGY
To answer our research questions, we ran a large-scale on study
on Amazon Mechanical Turk. Each participant played 10 rounds
and then took a survey. For each round, participants were allowed
a maximum of 10 guesses/hints. If the human-AI team was not
able to help each other guess the target word correctly after 10
attempts, they lost the round and moved to the next target word.
The decision to limit the number of attempts was motivated by
findings in previous studies that demonstrate user frustration when
the number of attempts are not limited [21]. Based on these previous
findings and to reduce user agitation and maximize the use of
participant time, we limited the maximum length of the game. We
looked at how the following factors impacted user perceptions of
their opponent:

• Whether participants perceived their partners to be a AI or
a human

• The model with which the participant was playing with
(Model A, Model B, Model C)

• The role users were playing (“guesser” vs. “giver”)
Participants were either told they were playing with an AI agent

or they were playing with another human. Before being assigned
to their opponent, they saw a configuration page similar to the
configuration page that informed them of the nature of their oppo-
nent. Participants assigned to the AI condition were told “Please
wait while we load the AI agent you will play against for the next
ten rounds”. Participants who were assigned the human condition
were told “Please wait while we match you with another person
for you play the next ten rounds”. Upon the beginning the study,
participants are told definitively about the AI identity of their part-
ner. Only at the very end of the study are participants asked about
the identity and perception of their partners (i.e. intelligence). We
measure their impressions after several rounds of gameplay, so
that they make an informed overall impression of their partner
based on the interactions. We were less interested in the changes of
perception while playing the games (though that is an interesting
direction for future work) and care more about the fully formed im-
pression after several rounds. Participants were assigned to either
play the “guesser” role or the “giver” role. “Guesser” and “giver”
agent roles in this study embody various aspects of interactivity.
For example, when an individual plays as the “giver” agent, the AI
agent is more responsive since it responds to the user’s clues and
adjusts its guesses based on the clues a user gives. The user has
more control and agency since it is able to “steer” the AI since the
AI adjusts its behavior. When the user plays as the “guesser”, the AI
does very little adjusting to steer the individual in the right direc-
tion and continues to give clues based on its personal knowledge
base. Based on these characteristics, it is fair to hypothesize that
users will find the agents more likeable when they play the role
of giver. We consider these differences as we investigate the social
perceptions of the AI agents in this study. Participants were also
assigned to a particular model. They were either assigned to the
Model A, Model B, or Model C.

For all players, we used one word list of ten words and balanced
it for difficulty: “necklace”,“strong”, “hair”, “book”, “dog”, “vanilla”,
“baby”, “cold”, “politician”, and “house”. Similar prior work [21] used
a similar metric (accessibility index of words, a measure from [44])
to balance for word difficulty. Gero et. al compared user mental
models of AI agents in a collaborative word game to win rate [21].
Their study did not show differences between different words lists
which were balanced for word difficulty. The game was developed
into an online web application using Flask (a lightweight Python
framework for web apps) and React (a Javascript library for building
front-end interfaces). In pilot studies, the average time of comple-
tion was 25 minutes. Based on this all participants were paid $3.50
commensurate with federal minimum wage.

5 SURVEY INSTRUMENT
5.1 Dependent Variables: User Perception of

Opponent
To address our research questions, we assessed user perception
of rapport, likeability, and intelligence of the opponent. Based on
previous work [4, 46], we asked participants to indicate how much
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Target
Word

AI Agent Clues

Strong
Model A weak, strength, powerful, firm, forceful, might, courage, hardy, superman, power,

overpower
Model B hard, need, loud, love, tough, firm, bitter, steel, fit, powerful, good
Model C powerful, potent, mighty, resilient, muscular, weak, robust, sturdy, forceful, durable,

manly
Politician

Model A corrupt, china, apathetic, campaign, launch, vice, operation, governor, rescue, whom,
strategy

Model B elect, official, government, democrat, congress, change, president, person, honest,
republican, mayor

Model C corrupt, hypocrite, representative, candidate, liar, senator, diplomat, untrustworthy,
elect, governor, prominent

Vanilla
Model A chocolate, sparrow, conversation, dark, tapioca, tangy, lift, forbidden, advice, pirate,

gloomy
Model B bark, fruit, chocolate, flavor, bean, relish, shake, plain, plant, basic, standard
Model C extract, milkshake, pudding, flavor, plain, custard, yoghurt, essence, tapioca, imitation,

bourbon
Cold

Model A snow, frozen, virus, freeze, hot, winter, sneeze, warm, frigid, frost, chill
Model B chill, blood, snow, frigid, frost, hot, sick, winter, fever, ice, temperature
Model C freezing, shiver, chilly, frigid, antarctic, fridge, freezer, icy, refrigerator, alaska, ice

Table 3: Examples of different hints given by the AI when the user plays as “guesser” for the different models.

they agreed/disagreed with statements like, “My opponent was not
paying attention tome.”, “My opponent and I worked towards a com-
mon goal.”, and “I feel that my opponent trusts me.”. To measure the
other dimensions in our research questions (likeability, intelligence,
rapport), we used a list of semantic differential scales. We adapted
scales on these dimensions by [8, 47, 56]. Participants were asked to
rate their opponent on pairs of antonyms (i.e. unfriendly/friendly,
unpleasant/likeable, ignorant/knowledgable). All of the perception
questions were asked based on a 7-point Likert scale. The averages
for perception dimensions were calculated for analysis. Prior work
has shown an appropriate Cronbach alpha for these measures [4].
Below, we list the dependent variables measured in the post-survey.

• Intelligence To measure intelligence, we used a list of four
semantic differential scales also used in [8, 47, 56], in which
participants rated their opponent on a team 7 point Likert
scale as Unintelligent/Intelligent, Ignorant/Knowledgeable,
Incompetent/Competent, and Irresponsible/Responsible. The
intelligence value was an average of these four scales.

• RapportWe measured rapport by adapting an instrument
from [46], in which participants rated items like “My op-
ponent seemed engaged” or “My opponent and I worked
towards a common goal” on a 7 point Likert scale. To mea-
sure rapport, we asked nine questions in which participants
responded with Strongly Disagree/Strongly Agree.

• Likeability To measure likeability, we used five semantic
differential scales, also used in [8, 47, 56] in which partici-
pants rated their opponent on a 7 point Likert scale as un-
friendly/friendly, not kind/kind, unpleasant/pleasant, not
cheerful/cheerful and dissimilar to me/similar to me.

5.2 AI Score: Perceived Partner Type
To ascertain whether participants felt that they were competing
against a human or an AI, we collected an AI score as done in [3, 30],
in which we asked participants about whether they believed they
were interacting with a human or an AI. The AI score is calculated
based on the average of two questions in our post survey that asked
participants about whether they perceived their opponent to be
human or AI (on a 7 point Likert scale). We then calculated the
median of the score for all participants (Mdn=4) in the study and
segmented users based on their scores into Human or AI. Prior work
shows that in studies in which users are told they are interacting
with humans/AI and they are not (i.e. some level of deception
involved), participants do not necessarily believe the conditions
[3, 57]. We were interested in the perceived AI score, as prior work
has already investigated the suspicion effect [30] that occurs when
people are suspicious when we tell them they are interacting with a
human, or when we do not disclose with whom they are interacting.
For this reason, our analysis included perceived AI identity (human,
AI) based on the AI score collected only.
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Agent User Role Assigned AI
Identity

N

Model A Guesser AI 12
Human 16

Giver AI 13
Human 14

Model B Guesser AI 12
Human 24

Giver AI 38
Human 15

Model C Guesser AI 8
Human 20

Giver AI 19
Human 8

Table 4: Number of participants per treatment.

6 RESULTS
6.1 Participants
A total of 237 participants participated in the study. We performed
several attentiveness tests to preserve the integrity of the data
collected. We excluded those who did not pass the linguistic atten-
tiveness task [42]. This left us with 199 subjects. The demographic
variables collected: education, age and language can be seen in
Table 5. Participants were randomly assigned to the conditions
leaving us with the breakdowns seen in Table 4.

Demographic
Age 26-35 (52%), 36-45 (24%), 45+ (16%), 18-

25 (8%)
Language English (94%), Other (not specified) (3%),

Portuguese (1%), Chinese (1%), German
(1%)

Education Middle School (1%), High School (28%),
Bachelors (61%), Advanced (10%)

Table 5: Participant Demographics, N=237

6.2 Subjective Social Perception of Opponent
When people perceive their partner to be an AI or human in varying
contexts, do they perceive one asmore intelligent, likeable, and have
more rapport with one than the other? We conducted a three way
ANOVA to compare the effects of perceived AI identity (human vs.
AI), user role (“giver” vs. “guesser”), andmodel (Model A vs. Model B
vs. Model C) and their interaction on perceived intelligence, rapport,
and likeability. Prior work shows that only a subset of individuals
believed the deceptive condition (telling users AI agent is human)
[57]. Similarly, in our study, only 45% of participants believed that
the bot was an AI when we told users it was an AI. For this reason,
we included an AI score to answer our research questions around
perceived AI identity. The details of the each ANOVA are included
in Table 6, with details in the subsections below. For all post-hoc
analyses, statistical significance was accepted at the p < 0.025 level
for simple two-way interactions and simple main effects.

6.2.1 Intelligence. A three-way ANOVA was conducted to deter-
mine the effects of perceived AI identity, model and player role on
perceived intelligence. There was a statistically significant three-
way interaction between perceived AI identity, player role, and
model F(11,187) = 6.96, p < 0.001. There was a statistically signif-
icant simple two-way interaction between perceived AI identity
and player role for Model B, F(3, 85) = 10.0, p < 0.001, and for the
Model A F(3,51) = 6.53, p < 0.001, but not for the Model C, F(3, 51)
= 2.68, p = 0.06. For the Model B and Model A, this result suggests
that the effect of the user role (“giver” vs. “guesser”) on perceived
intelligence depends on the perceived AI identity of the agent.

There was a statistically significant simple main effect of user
role (“giver” vs. “guesser”) for the Model A when individuals per-
ceived their partner to be an AI. In other words, the mean perceived
intelligence score for “giver” and “guesser” roles was statistically
significant for users who interacted with the Model A and perceived
their partners to be an AI. All simple pairwise comparisons, be-
tween the different roles, were run for individuals who interacted
with the Model A and perceived their partners to be an AI agent
with a Bonferroni adjustment applied. For those interacting with
the Model A and perceiving their partners to be AI, there was a
statistically significant mean difference between perceived intelli-
gence of partners for those who played as “guesser” (4.46 ± 1.82)
and those who played as “giver” (5.56 ± 0.95) of 1.1 (p < 0.05) (seen
in Figure 3a). For those who believed their partners to be an AI,
users playing Model A (“giver”) found their partners to be more
intelligent than those playing Model A (“guesser”).

6.2.2 Likeability. As with intelligence (and all other subjective
social perception measures), a three-way ANOVA was conducted
to determine the effects of perceived AI identity, model and player
role on perceived likeability. There was a statistically significant
three-way interaction between perceived AI identity, player role,
and model, F(11, 187) = 10.33, p < 0.001. There was a statistically
significant simple two-way interaction between the model and the
player role when the agent was perceived to be an AI, F(5, 96) = 2.80,
p = 0.02, but not when the partner was perceived to be a human, F(5,
91) = 0.75, p = 0.588. When the partner is perceived to be an AI, this
result suggests that the effect of the player role (giver vs. guesser)
on perceived likeability depends on the model with which it is
interacting. There was a statistically significant simple main effect
of model for individuals who believed they were playing with an AI
agent as a guesser, F(2, 187) = 5.5, p = 0.004. For those interacting as
“guesser” and perceiving their partners to be an AI agent, there was
a statistically significant mean difference of perceived likeability of
partners between those who played with the Model C agent (5.29
± 0.95) and those who played with the Model B agent (3.83 ± 0.80)
of 1.46 (p< 0.01) and between the Model C agent (5.29 ± 0.95) and
the Model A agent (4.11 ± 0.89) of 1.18 (p<0.05) (seen in Figure
Figure 3b). Simply put, we observe a drop in perceived likeability
for both the Model B (“guesser”) and the Model A (“guesser”) agent
compared to the Model C (“guesser”) when it is perceived as an AI.

.
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(a) Perceived intelligence of partners measured after cooperative gameplay. Intelligence score is based on themean of 4 items from the survey
(1=Not Intelligent, 7=Intelligent). For those interacting with the Model A and perceiving their partners to be AI, there was a statistically
significant mean difference between perceived intelligence of partners for those who played as “guesser” (4.46 ± 1.82) and those who played
as “giver” (5.56 ± 0.95) (p < 0.05), with those playing as the “giver” perceiving their partners to be more intelligent.

(b) Perceived likeability of partners measured after cooperative gameplay. Likeability score is based on the mean of 6 items from the survey
(1=Not Likeable, 7=Likeable). For those interacting as “guesser” and perceiving their partners to be an AI agent, there was a statistically
significant mean difference of perceived likeability of partners between those who played with the Model C agent (5.29 ± 0.95) and those who
played with the Model B agent (3.83 ± 0.80) of 1.46 (p< 0.01) and between the Model C agent (5.29 ± 0.95) and the Model A agent (4.11 ± 0.89) of
1.18 (p<0.05).

(c) Perceived rapport of partners measured after cooperative gameplay. Rapport score is based on the mean of 9 items from the survey (1=No
Rapport, 7=Rapport). For those interacting as “guesser” and perceiving their partners to be AI, there was a statistically significant mean
difference of perceived rapport of partners between those who played with the Model C agent (4.75 ± 1.26) and those who played with the
Model B agent (3.00 ± 1.25) of 1.75 (p< 0.001) and between the Model C agent (4.75 ± 1.26) and the Model A agent (3.31 ± 1.03) (p<0.01).

Figure 3: The social perceptionmeasures (intelligence, rapport, and likeability) plotted against the perceived roles of the agent.
Different hues represent the different roles users were assigned to play against the agent.
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Dependent Variable Source SS df F
Intelligence

User Role x Model x Perceived Role 91.86 11.0 6.96***
Likeability

User Role x Model x Perceived Role 111.20 11.0 10.33***
Rapport

User Role x Model x Perceived Role 103.08 11.0 8.57***
Gameplay

User Role x Model x Perceived Role 235.97 11.0 7.85***
Significance Codes : ∗∗∗p <0.001, ∗∗p <0.01, ∗p <0.05

Table 6: ANOVA predicting dependent variables (intelligence, likeability, rapport, creativity) based on assigned conditions:
(“guesser” vs. “giver”), model (Model A, Model B, Model C), and perceived role (AI, Human).

6.2.3 Rapport. A three-way ANOVA was conducted to determine
the effects of perceived AI identity, model and player role on per-
ceived rapport. There was a statistically significant three-way inter-
action between perceived AI identity, player role, and model, F(11,
187) = 8.57, p < 0.001.

There was a statistically significant simple two-way interaction
between the model and the player role when the agent was per-
ceived to be an AI, F(5, 96) = 3.89, p = 0.003, but not when the
partner was perceived to be a human, F(5, 91) = 1.34, p = 0.25. When
the partner is perceived to be an AI, this result suggests that the
effect of the player role (“giver” vs. “guesser”) on perceived rapport
depends on the model with which it is interacting. There was a
statistically significant simple main effect of model for individuals
who believed they were playing with an AI agent as a guesser, F(2,
187) = 7.23, p < 0.001. For those interacting as “guesser” and per-
ceiving their partners to be AI, there was a statistically significant
mean difference of perceived rapport of partners between those
who played with the Model C agent (4.75 ± 1.26) and those who
played with the Model B agent (3.00 ± 1.25) of 1.75 (p< 0.001) and
between the Model C agent (4.75 ± 1.26) and the Model A agent
(3.31 ± 1.03) of 1.44 (p<0.01). Simply put, we observe a drop in
perceived rapport for both the Model B “guesser” and the Model
A “guesser” agent when it is perceived as an AI when compared to
the Model C “guesser”.

6.3 Game Play Results
A three-way ANOVA was conducted to determine the effects of
perceived AI identity, model and player role on gameplay outcome.
We operationalized gameplay outcome as average number of turns
during gameplay (i.e. the higher the number of turns users took,
the worse the user performance). These gameplay outcome for the
different models can be seen in Table 2 and Figure 2. There was a
statistically significant three-way interaction between perceived
AI identity, player role, and model, F(11, 187) = 7.85, p < 0.001.

There was a statistically significant simple two-way interaction
between the player role (“giver” vs. “guesser”) and the perceived
AI identity (AI vs. Human) for Model B F(3,85) = 6.18 p< 0.001 and
for the Model A F(5,51) = 3.26 p < 0.05 , but not for the Model C
F(3,51) = 0.992 p = 0.404. When users interacted with the Model A
or Model B, this result suggests that the effect of the player role
(“giver” vs. “guesser”) on number of turns taken during the game
depends on the perceived AI identity.

There was a statistically significant simple main effect of per-
ceived AI identity for individuals who played against Model B
(“guesser”) F(1,187) = 6.48 p < 0.05 and Model A (“giver”) F(1,187) =
5.92 p < 0.05. In other words, for those interacting as “guesser” and
playing with Model B, there was a statistically significant mean
difference of number of turns between those who perceived their
partners to be an AI (3.91 ± 0.92)and those who perceived their
partners to be a Human (5.40 ± 2.15) (p< 0.05).

For those interacting as “giver” and playing with the Model A,
there was a statistically significant mean difference of number of
turns between those who perceived their partners to be an AI (1.41
± 0.35) and those who perceived their partners to be a Human (2.96
± 2.27) (p< 0.05), with those believing that their partners to be an AI
taking fewer turns to win than those who believed to be interacting
with human partner. Differences can be seen in Figure 4.

6.4 Potential Underlying Reasons for
Differences

Given the results from our analysis, particularly around the ef-
fect of perceived identity on the overall game performance, we
wanted to further investigate why we were seeing these differences.
Since we saw statistically significant differences for perceived iden-
tity for those interacting with the Model A(“Giver”) and Model
A(“Guesser”), we looked at top 20% games (yielding 60 games from
6 users) from high performing users who believed they were play-
ing with the AI and bottom 20% of games (yielding 60 games from 6
users) from low performing users who believed they were playing
with a human. We wanted to identify different ways people were
interacting with their partners and differences in the kinds of hints
people were using. Two of the authors individually looked at each
set of 60 games and identified a codebook of trends in the kinds
of words used. The authors compared trends and finalized a list.
We found that those who believed their partner to be a human
repeated clues, used relational words like “opposite” to indicate
a word was the antonym of the target word and used suggestive
hints to interact with their partners. All of these tactics contribute
to an increase in number of turns taken to win that can impact the
overall performance of users. The list of tactics used is presented
in Table 7.
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Figure 4: Average number of turns plotted against the perceived roles of the agent. Different hues represent the different
roles users were assigned to play against the agent. For those interacting as “guesser” and playing with Model B, there was a
statistically significant mean difference of number of turns between those who perceived their partners to be an AI (3.91 ±
0.92) and those who perceived their partners to be a Human (5.40 ± 2.15) (p< 0.05). For those interacting as “giver” and playing
with the Model A, there was a statistically significant mean difference of number of turns between those who perceived their
partners to be an AI (1.41 ± 0.35) and those who perceived their partners to be a Human (2.96 ± 2.27) (p< 0.05).

Perceived
Partner

Trend Definition Example Target: Hints

AI
Trigger words Trigger words are words that trigger the

target word in one turn
necklace: pearl; baby: infant

Diverse words Using adjectives to describe target word,
synonyms, antonyms (a variety of dif-
ferent kinds of descriptive words)

vanilla: chocolate, bean, strawberry,
white, cream, flavor, taste, syrup

Human
Repetition Individuals repeat the same words necklace:jewel, girl, gold, neck, jewel,

neck, chain, neck, chain, jewel
Relational
words

Using multiple turns to and relating one
word to another, i.e. “opposite” to indi-
cate the hint sent prior is the “opposite”
of the target word

cold: hot, heat, opposite, hot

Suggestive
Hints

Individuals trying to learn their part-
ner’s gender and using suggestive terms
unrelated to the target word

vanilla: ice, snow, hot, sure, cream, op-
posite, human, male, female, sex

Table 7: Types of behavior users exhibited when they believed to be interacting with a human versus when they believed to
be interacting with an AI and Human for Model A when player interacted as “giver”

6.5 Limitations
Our study has a few limitations. First, as many researchers have
done in the past, we use an AI-driven cooperative game with par-
tially missing information as a testbed for our evaluation [4, 21].
To consider the ecologicial validity of our results, and thus gener-
alizeability we must consider the environment in which we ran
these studies. Our findings hold credence given that the game in
question is a cooperative one with missing information (that re-
sembles human-AI interactive scenarios) and not a zero-sum game.
Given the environment in which we ran our study, there are po-
tential limitations to the generalizability of our results to other
human-AI environments, but certainly of value to other human-AI
collaborative spaces in which the user may perceive an AI partner

to be a human or an AI. Secondly, we use Mechanical Turkers who
are motivated to finish the study as fast as they possibly can. To
account for this, we filtered out users who did not appear to put in
meaningful effort in gameplay (filler words as guesses). Addition-
ally, the top 20% of games from high performing users in the AI
group and the bottom 20% of games from low performing users in
the human group were compared. While we acknowledge this ap-
proach has limitations since all interactions were not analyzed, the
results of this analysis show the most extreme cases in each of these
groups and help readers better understand how users interacted at
a granular level.
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7 DISCUSSION
Our results demonstrate that there are social perception differences
between different AI agents, as there are when the direction of
communication is varied. The direction of the communication with
the AI agent combined with perception of AI identity impacts both
gameplay performance and social perception. We discuss our find-
ings below.

7.1 Explaining Differences in Performance
We observed that when people think they are interacting with a
human, they employ different strategies to communicate the impor-
tance of words in relation to the target word and the relationship
of a word to the target word. Our analyses revealed that for two
of the models (Model B (guesser) and Model A (giver)), there were
statistically significant differences for the average number of turns
taken by participants who perceive their partners to be human
compared to those who perceive their partners to be an AI. Look-
ing at the types of words players use to communicate with their
partners, we observe that users are trying to leverage the one word
communication medium to communicate richer information that is
not interpretable by an AI, i.e. “opposite” to imply that that the prior
word sent was an antonym of the target word, or repeating words
to highlight the importance of words. Here, we see an overestima-
tion of their partner’s ability to interpret. Prior work has shown
that an individual who overestimates their AI partner’s abilities
performs worse in such collaborative spaces [21]. Belief that the
partner is a human is a form of overestimation. By overestimating
their partner’s abilities, user’s gameplay performance deteriorated
because they attempted to communicate information that was not
interpretable by the AI agent.

7.2 Interpreting Social Perception Differences
We observe many different relationship trends between models,
perceived AI identity, and direction of communication. Let’s con-
sider the measure of intelligence, for example. We find that there
are statistically significant differences between perceived intelli-
gence score between “giver” and “guesser” agents when the AI
is perceived to be an AI for the Model A, with the “giver” being
perceived as more intelligent than the “guesser” model. We discuss
our findings in detail below.

7.2.1 Social Perception Differences for “Giver” and “Guesser”: User
Control and Direction of Communication. In the AI-driven coopera-
tive game with partially observable information presented in this
paper, Guess the Word, there are two roles played: one in which the
human must interpret the limited information being communicated
by the AI and submit guesses accordingly (“guesser”), and one in
which the human sends clues that are digestible and interpretable
to an AI agent to be interpreted (“giver”). Our findings show that
for one of the AI agents (Model A), when participants believed to
be playing against an AI, they found their partners to be more intel-
ligent when they were playing the role of “Giver” then when they
were playing the role of “Guesser”. Prior work has shown there to
be a bias against bots when they disclose their identity [29, 57], but
in our experiment, we observe the bias against the AI to be more
present when users play the “guesser” versus the “giver”.

When a player interacts as the “giver”, the AI is reactionary, i.e.
responding to the user at every turn. Conversely, when a player
interacts as the “guesser”, they are following the AI’s lead, reacting
to the the AI’s clues. One potential explanation for the differences
in social perception could be explained around a user’s feeling
like they are in control when they play as the “giver” and not
when they play as the “guesser”. Prior work has identified three
components of interactivity that may impact social perceptions:
direction of communication, user control, and time [38]. Direction
of the communication varies in “giver” and “guesser” roles as does
the amount of control a user has to influence the AI’s responses.
Users have more control as givers since the AI reacts to their clues.

7.2.2 Social Perception Differences for the Different Models. When
users play the role of “guesser” and believe their partners to be an
AI, the Model C agent is perceived more positively (likeability and
rapport) than Model A and Model B. Of all three agents, Model C
(“guesser”) has a higher average score and lower average number
of turns than both the Model A (“guesser”) and Model B (“guesser”).
One potential explanation could be that it is a better model than
the others, one that is better at giving clues that are interpretable
by users. The average score (number of turns) for the Model C
(“guesser”) is higher than all of the others (M=6.06). The average
number of turns taken to win are also lower than all of the others
(M=2.37). Our results seem to suggest that if the human-AI collab-
oration is successful (i.e. fewer number of turns, higher average
score) that users judge the AI less harshly than they would if they
felt that the AI was underperforming, that any “mistake” on the AI’s
part would result in a more negative perception of the AI, whereas
people are more forgiving of their percieved human partners. This
is in opposition to prior studies that have discovered a bias against
AI and suggests it is not a general bias but a bias against specific
AI behavior that can be mitigated through agent-tuning behavior
(as shown across 3 different AI agents here).

Our results highlight that it is not enough to evaluate social per-
ceptions with one AI model, as the results across our three AI agents
vary based on the behavior of the AI agent. Many researchers in the
CHI community investigating human-AI interaction have used one
model to measure user perception in conversational agents [43] or
other computer-mediated communications that are AI driven [30].
And while those in AI communities often compare models, this is
typically in the context of accuracy, performance, etc., and very
often in simulation environments. However, our results show that
social perceptions vary given the behavior of the AI and the context.
To draw conclusions about the user perceptions of the AI agent in
a human-AI collaborative environment, it is important to note the
context of the collaboration and interactivity, the direction of the
communication, and the underlying model driving the interaction.
We see very different trends for our Model C when compared to
both the Model A and Model B, particularly for the “guesser” role.
These differences are explained by how the AI behaves differently
and the quality of the clues it provides for users. Whereas with the
other “guesser” AI agents we see a decrease in social perception
(likeability, rapport, intelligence) when users believe they are inter-
acting with an AI (vs. a Human), we do not observe this trend with
the Model C “guesser” AI, suggesting there is something about the
the Model C “guesser” AI that impacts how users perceive it.
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7.3 Directionality of Communication and
Implications for Practitioners

Our findings show that in human-AI interaction, the directionality
of communication has an impact on the perception of an agent.
Often the perception of the agent in an interaction has an impact
on the outcome of the interaction. For this reason, it is important to
consider the implications of directionality of communication and
the potential implications for practitioners. In human-AI collabora-
tive settings (conversational agents [9], pedagogical systems [23],
or co-creation tools [31, 32]), AI systems can be trained to react
to human input rather than lead the collaboration and interaction.
Further research is required to investigate directionality of com-
munication in settings beyond the Guess the Word environment
we have investigated in this study, but our findings imply that
directionality has an impact on social perception of the AI.

8 CONCLUSION
In this work, we find performance differences given user’s perceived
identity of their AI partner and the direction of communication.
Through an online study in which participants played an AI-driven
cooperative game with partially observable information with mul-
tiple AI agents in various directions of communication (as “guesser”
and “giver”), we show that there are social perception differences
with different AI agents, as there are when the direction of commu-
nication is varied. We also find that the bias against the AI that has
been demonstrated in prior studies [4, 20] varies with the direction
of communication and with the AI agent. This research leads to
new insights about how to study human-AI collaboration and lays
the groundwork for future studies.
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